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ABSTRACT: This paper concerns the construction of scaling models for large-scale
assessments in education. A scaling model, which makes use of information from both
responses to cognitive assessment and background survey items, produces plausible
values for individual students. There are two major challenges when building a scaling
model – (1) a large number of background variables and (2) many missing values
in the background survey data. To tackle these challenges, we propose a variable
selection approach to latent regression modelling. The proposed approach handles
missing data by iterative imputation and controls variable selection error by a data-
splitting procedure.
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1 Problem Setup

Consider data collected from N students, where data from different students are
independent. For each student i, the data can be divided into two parts – (1) re-
sponses to cognitive items and (2) non-cognitive predictors. We use a random
vector Yi to denote student i’s cognitive responses. Due to the matrix sampling
design for cognitive items in international large-scale assessments (ILSAs), the
length of Yi can vary across students. More precisely, we use Bi to denote the
set of cognitive items that student i is assigned. Then Yi = {Yi j : j ∈ Bi}.
For simplicity, we assume all the items are binary, i.e., Yi j ∈ {0,1}. In addi-
tion, consider p predictors collected via non-cognitive survey questions. Let
Zi = (Zi1, . . . ,Zip)

⊤ denote the complete predictor vector for student i. Often,
there are missing values in Zi. Let Ai denote the set of observed predictors for
student i, and let Zobs

i = {Zi j : j ∈ Ai} and Zmis
i = {Zi j : j /∈ Ai}. The predictors



are of mixed types. Here, binary, categorical (ordinal/nominal), and continu-
ous predictors are considered. Note that an ordinal variable will be treated as
a nominal one here for simplicity. In what follows, we introduce a latent re-
gression model, which can be decomposed into (1) a measurement model, (2)
a structural model and (3) a predictor model.

Measurement model. We introduce a latent variable θi as the latent con-
struct, which is measured by the cognitive items. The measurement model is
an IRT model that specifies the conditional distribution of Yi given θi. More
specifically, this model assumes local independence, an assumption that is
commonly adopted in IRT models (Embretson & Reise, 2000). That is, Yi j,
j ∈ Bi, are conditionally independent given θi. For a dichotomous item j, the
conditional distribution of Yi j given θi is assumed to follow a two-parameter
logistic model (2PL, Birnbaum, 1968). That is,

P(Yi j = 1|θi) =
exp(a jθi +b j)

1+ exp(a jθi +b j)
, (1)

where a j and b j are two item-specific parameters. We assume that all the item
parameters are known – they are fixed to be the pre-calibrated values.

Structural model. The structural model regresses the latent construct θi onto
the complete-data predictors Zi1, ..., Zip. A linear regression model is as-
sumed for θi given Zi1, ..., Zip. More specifically, for each variable j, we
introduce a transformation g j(Z j). When Z j is an ordinal variable with cat-
egories {0, ...,K j}, the transformation function g j creates K j dummy vari-
ables, i.e., g j(Z j) = (I({Z j = 1}), ...,I({Z j = K j}))⊤. For continuous and
binary variables, g j is an identity link, i.e., g j(Z j) = Z j. We assume θi|Zi ∼
N(β0 +β

⊤
1 g1(Zi1)+ · · ·+β

⊤
p gp(Zip),σ

2), where β0 is the intercept, β1, ..., βp

are the slope parameters, and σ2 is the residual variance. Note that β j is a
scalar when predictor j is continuous or binary and is a vector when the pre-
dictor is ordinal. Here, β0, β1, ..., βp, and σ are unknown and will be estimated
from the model. The main goal of our analysis is to find predictors for which
∥β j∥ ̸= 0.

Predictor model. To handle missing values in Zi js, we impose a joint model
for the predictors. Although different models may be imposed here, we assume
a Second-Order Exponential (SOE) model, under which missing data imputa-
tion and parameter estimation can be carried out in a computationally efficient



way. More precisely, we let (θi,Zi) be i.i.d., following an SOE model. Under
this model, the conditional distribution of θi given Zi is the linear regression
model in the above structural model. The conditional distribution of Zi j given
(θi,Zi,− j) takes the following forms:

• A linear regression model (with normal residual), if variable j is contin-
uous;

• A logistic regression model, if variable j is binary;
• A multinomial logistic regression model if variable j is categorical.

These conditional distributions will be used later for missing data impu-
tation and parameter estimation. We remark that except for the parameters of
the structural model, the rest of the parameters in the SOE can be viewed as
nuisance parameters, as they are not of interest to us. The predictor model and
these nuisance parameters are introduced to handle the missing values in the
predictors.

2 Estimation and Variable Selection

The model introduced in the previous section implies a joint distribution of
complete data, which further implies the distribution of observed data under
the Missing At Random (MAR) assumption. We estimate the model and con-
duct variable selection based on this implied distribution for observed data.
More specifically, we estimate the model parameters using an iterative impu-
tation algorithm. According to Liu et al. , 2014, the estimate produced by
this algorithm is asymptotically equivalent to a full Bayesian posterior-mean
estimator based on the observed data likelihood. Thanks to the connection be-
tween the frequentist and Bayesian estimation provided by the Bernstein-von
Mises Theorem (Van der Vaart, 2000, Chapter 10), this estimate also enjoys the
desired frequentist properties, such as consistency and asymptotic normality.

Furthermore, we adopt a data-splitting method for controlled variable se-
lection. More specifically, we combine the data-splitting method (Dai et al. ,
2022) and the iterative imputation method to select the non-null predictors in
the structural model of latent regression. Thanks to the properties of the iter-
ative imputation method, this method has the theoretical guarantee to control
the asymptotically false discovery rate for variable selection. The theoretical
properties of the proposed method are confirmed by simulation results.



3 Discussions

Traditionally, a PCA-based latent regression model is used for the scaling of
large-scale assessment data, in which the missing values are handled by a miss-
ing indicator approach, and the high dimensionality of the background vari-
ables and their missing indicators is reduced by Principal Component Analysis
(PCA). However, this approach has three drawbacks: (1) the missing indica-
tor approach does not perform well under certain data missingness patterns,
(2) PCA may introduce spurious dependence between the achievement traits
and background variables, and (3) the resulting model lacks interpretability
due to the involvement of hard-to-interpret principal component scores. The
proposed method does not suffer from these issues. It handles missing values
more properly using iterative imputation. Furthermore, the FDR-controlled
variable selection result is more interpretable and better characterises the rela-
tionship between the achievement traits and the background variables. Thus,
this approach may be more suitable than the PCA-based approach in practice
for scaling large-scale assessment data.
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