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ABSTRACT: Latent variable models are a powerful tool in various research fields
when the constructs of interest are not directly observable. However, the likelihood-
based model estimation can be problematic when dealing with many latent variables
and/or random effects since the integrals involved in the likelihood function do not
have analytical solutions. In the literature, several approaches have been proposed to
overcome this issue. Among them, the pairwise likelihood method and the dimension-
wise quadrature have emerged as effective solutions that produce estimators with de-
sirable properties. In this study, we compare a weighted version of the pairwise like-
lihood method with the dimension-wise quadrature for a latent variable model for
binary longitudinal data by means of a simulation study.
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1 Latent variable models for longitudinal binary data

Let y1,y2, . . . ,yp be vectors of p binary observed variables each of them ob-
served at T different occasions, z1,z2, . . . ,zT latent variables that account for
the associations among the p items at each time point. Let u1,u2, . . . ,up be p
random effects that account for the associations of the same item at different
time points. The joint density of the observed variables can be defined as

f (y) =
∫

Rq
g(y | z,u)h(z,u)dzdu

where g(y | z,u) is referred to as measurement part of the model and h(z,u) as
structural part of the model. The dimension of the integral is q = p+T .
The measurement part of the model is defined as a generalized linear model
with the random component given by

g(y|z,u) =
T

∏
t=1

p

∏
j=1

g(yt j|zt ,u j) =
T

∏
t=1

p

∏
j=1

πt j(zt ,u j)
yt j(1−πt j(zt ,u j))

(1−yt j),



where the first equality comes from the conditional independence assumption
between items and over time. Each g(yt j|zt ,u j) follows a Bernoulli distribution
of parameter πt j(zt ,u j), that is the probability of success of item j at time t.
The systematic component defines the linear predictor ηt j = α0t j +αt jzt + u j
where α0t j’s are item and time-dependent intercepts and αt j’s are item and
time-dependent factor loadings. We consider the logit as the link function
between the systematic component and the conditional means of the random
component.
As for the structural part of the model, we assume that the latent variables
follow an autoregressive process of the first order (Cagnone et al. , 2009) as
follows

zt = φzt−1 +δt (1)

where φ is the autoregressive coefficient, δt ∼ N(0,1) and z1 ∼ N(0,σ2
1).

Moreover, the joint density h(z,u) is a multivariate normal with zero mean
vector and block diagonal covariance matrix Ψ that contains the matrices Ω =
diag j=1,...,p{σ2

u j} and the autocovariance matrix Γ of the latent variables.

2 Model estimation

Model estimation is usually performed by using a full maximum likelihood
method. Given a sample of size n, the log-likelihood is given by

L(θ) =
n

∑
i=1

log f (yi,θ) =
n

∑
i=1

log
∫

Rq
g(yi | zi,ui)h(zi,ul)dzidui (2)

where θ is the vector of parameters to be estimated. A problem related to
the maximization of the log-likelihood is that, in general, the multidimen-
sional integral in (2) is not solvable analytically. Recent solutions proposed
in the literature to solve this problem include the pairwise likelihood (PL)
approach (Lindsay, 1988) and the dimension-wise (DW) quadrature method
(Bianconcini et al. , 2017). In this work, we compare DW with a weighted
version of PL (Varin & Czado, 2010).
The PL estimator is obtained by maximizing bivariate likelihood products that
contain the greatest quantity of model parameter information. In the latent
variable model for longitudinal binary data described in Section 2, the bivari-
ate density for a pair of responses is

f (yi jt ,yi j′t ′ ;θ) =
∫

g(yi jt |zit ,ui j)g(yi j′t ′ |zit ′ ,ui j′)h(zt ,zt ′ ,u j,u j′)dztdzt ′du jdu j′ .



The dimension of the integrals involved in the expression of f (yi jt ,yi j′t ′ ;θ) is
four and if j = j′ or t = t ′ it reduces to three. Thus, they can be easily approx-
imated using the Gauss Hermite (GH) quadrature method. As close pairs are
more informative, we use a PL likelihood constructed from marginal proba-
bilities of observed pairs less distant than d ≥ 0 time points. This produces a
weighted log PL likelihood of order d defined as

pl(d)(θ;y) = ∑
i

∑
j, j′,t,t ′

log f (yi jt ,yi j′t ′ ;θ)I[0,d](t ′− t). (3)

I[0,d] is the indicator function, equal to 1 if (t ′− t) ∈ [0,d] and 0 otherwise.
The DW method is based on the following representation of the marginal den-
sity function

f (y;θ) = |Cmo|
∫

Rq

∏
p
j=1 g(y j|Cmob∗+bmo)h(Cmob∗+bmo)

φ(b∗;0,I)
φ(b∗;0,I)db∗ =

= |Cmo|
∫

Rq
m(b∗)φ(b∗;0,I)db∗ = |Cmo|Eφ[m(b∗)] (4)

where b = (z,u), Σmo = CmoC′
mo and φ(·) is the normal density function.

DW consists in approximating the function m(b∗) as follows (Bianconcini
et al. , 2017)

m̂(b∗) =
s

∑
l=0

(−1)l
(

q− s+ l −1
l

)
ms−l(b∗) =

s

∑
l=0

Alms−l(b∗) (5)

where ms−l(b∗)=m(0, · · · ,b∗k1
,0 · · · ,b∗ks−l

, · · · ,0) and Al =(−1)l
(

q− s+ l −1
l

)
.

Replacing (5) in (4) we obtain the approximate density function

fa(y;θ) = fL + |Cmo|

[
s−1

∑
l=0

Al

∫
Rs−l

∑
k1<...<ks−l

ms−l(b∗)φ(b∗k1
) · · ·φ(b∗ks−i

)db∗k1
..db∗ks−l

]
.(6)

where fL denotes the classical Laplace approximation of the integral when
s = 0. The dimension of the integrals in expression (6) depends on the choice
of s. With low values of s, the integrals can be easily approximated using the
GH quadrature. In the extreme cases of s = 0 and s = q, we obtain the classical
Laplace and the adaptive GH quadrature method respectively.



3 Simulation study: preliminary results

We perform a simulation study with p = 3, T = 6, n = 200. We consider the
UnWeighted (UW) PL function where all the pairs are involved and the PL of
order d = 1,2,3. As for DW, we set s = 0,1,2. For both methods, the number
of quadrature points of GH is fixed at 8. 500 replications are generated for each
condition of the study. From the results (Table 1) it is evident that DW with
s = 2 shows the best performance for almost all the parameter estimates. As
for PL, in this design, we don’t observe relevant differences for different d and
UW. We will further explore the effect of T on the PL method by increasing it.

Table 1. Estimated bias and rmse (in brackets), p = 3 and T = 6, n = 200.

True PL DW
UW d = 1 d = 2 d = 3 s = 0 s = 1 s = 2

α1 = 1.00
α2 = 0.96 −0.11(0.55) 0.08(0.39) 0.16(0.58) 0.13(0.49) −0.21(0.24) −0.12(0.22) −0.02(0.18)
α3 = 1.07 −0.02(0.33) 0.05(0.40) 0.14(0.55) 0.09(0.44) −0.27(0.30) −0.24(0.29) −0.09(0.21)
φ = 0.50 0.01(0.11) −0.02(0.11) −0.02(0.11) −0.02(0.10) 0.07(0.10) 0.01(0.09) −0.02(0.09)
σ2

1 = 2 −0.19(1.22) 0.26(1.24) 0.21(1.13) 0.17(1.10) 0.23(0.93) 0.46(1.11) 0.29(0.93)
σ2

u1 = 1 −0.02(0.29) 0.02(0.30) 0.03(0.32) 0.02(0.31) −0.30(0.42) −0.26(0.41) −0.08(0.31)
σ2

u2 = 1 −0.07(0.38) 0.07(0.39) 0.08(0.40) 0.07(0.42) −0.20(0.34) −0.14(0.34) −0.01(0.33)
σ2

u3 = 2 0.01(0.63) 0.09(0.74) 0.12(0.78) 0.09(0.71) −0.40(0.57) −0.30(0.51) −0.09(0.47)
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