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ABSTRACT: We introduce a new parametric approach for clustering multilevel sur-
vival data that accounts for the heterogeneity at baseline and random distributions of
the explanatory variables. The proposed method aims to identify clusters of patients
with different survival patterns and uncover the impact of the known hierarchy on
survival within each cluster. The objective function is maximized using a stochastic
EM algorithm tailored to right-censored lifetime data. The proposed methodology can
be seen as a generalization of multilevel cluster-weighted modeling for time-to-event
outcomes. Promising results are showcased on synthetic data.
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1 Introduction and model formulation

The paper proposes an approach for clustering survival data in which the pro-
cedure takes advantage of cluster-wise different random covariates. Addition-
ally, the heterogeneity at the baseline due to a known hierarchy present in the
sample (e.g., patients within hospitals) is accounted for in the time-to-event
outcome by means of a parametric frailty model. In details, in our proposal a
statistical unit is identified by the triplet (yi j,δi j,xi j) where:

• yi j is the minimum between the survival time ti j and censoring time ci j
for subject i in hospital j,

• δi j = I (ti j ≤ ci j) is the event indicator,
• xi j = (ui j,vi j) denotes the vector of covariates with ui j and vi j respec-

tively indicating the subset of continuous and categorical predictors for
the i j-th unit.



The entire sample is therefore composed by N = ∑
J
j=1 n j observations among

the J hospitals. We further assume that the observed data can be partitioned
into G latent clusters independently of the known J groups. The resulting log-
likelihood for the considered model reads as follows:
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The quantities h0(·) and H0(·) denote the baseline hazard and cumulative haz-
ard functions, and L(q) is the q-th derivative of the Laplace transform of the
frailty distribution. Depending on the chosen baseline and/or frailty term, the
formulation in (1) encompasses a general family of parametric mixture frailty
models. With φ(·) and ψ(·) we respectively identify the densities of a multi-
variate Gaussian and independent multinomial distributions (one for each cat-
egorical variable), needed to incorporate the cluster-wise different contribution
of the covariates. Further, d jg is the total number of observed events assigned
to cluster g belonging to hospital j, and R jg contains the indexes of the obser-
vations in cluster g and hospital j. The remaining terms are model parameters
that need to be estimated from the sample. In details, τg represents the mixing
proportion for cluster g, with τg ≥ 0 for all g and ∑

G
g=1 τg = 1. The vector of

regression coefficients is denoted with βββg, while θg is the heterogeneity pa-
rameter for g = 1, . . . ,G. Lastly, parameters for the conditionally independent
multinomial distributions within each cluster are compactly identified with λg,
and µµµg, ΣΣΣg denote the mean vector and the covariance matrix of the continuous
covariates.

Maximization of (1) is carried out by means of a stochastic EM algorithm
tailored to right-censored lifetime data (Bordes & Chauveau, 2016). The pro-
posed methodology extends the work in Berta & Vinciotti, 2019 by considering
a time-to-event outcome, leveraging on recent advances in the efficient estima-
tion of parametric frailty models (Munda et al., 2012). To this extent, the goal
of the proposed procedure is twofold. On the one hand, we aim to identify G
clusters of patients with different survival patterns. On the other hand, within



each cluster we wish to uncover the different impact the known hierarchy has
on the survival. Promising results are reported for synthetic data, as described
in the next section.

Table 1. BIC and ARI for several choices of baseline, number of clusters and frailty
densities in the Multilevel time-to-event cluster-weighted model.

G Baseline Frailty BIC ARI
2 Exponential None -3795.60 0.84
2 Exponential Gamma -3756.93 0.84
2 Weibull None -3279.04 0.93
2 Weibull Gamma -2586.46 0.95
3 Exponential None -3767.83 0.73
3 Exponential Gamma -3597.16 0.67
3 Weibull None -3193.45 0.82
3 Weibull Gamma -2810.98 0.80

2 Results on simulated data

We assess the performance of the proposed procedure on a two components
(G = 2) synthetic population simulated with the genfrail function of the
frailtySurv R package (Monaco et al., 2018). The data generating pro-
cess includes n j = 40 for all j = 1, . . . ,J and J = 10, resulting in a sample
whose size is equal to N = 400. The baseline hazard has a parametric Weibull
distribution, while a Gamma density is used to simulate the frailty term in the
equally sized clusters. The survival time depends on two continuous covari-
ates, whose distribution is multivariate Gaussian with cluster-wise different
mean vectors and equal covariance matrix. Model results are reported in Ta-
ble 1 in which several specifications for the baseline and frailty densities are
considered. The comparison includes also an option with fixed effects only,
denoted with Frailty equals to None in the table. We observe that the model
with Weibull baseline, Gamma frailty and true number of clusters outperforms
the competing methods in both goodness of fit and clustering performance,
showcasing higher values in both Bayesian Information Criterion and Adjusted
Rand Index metrics.



3 Conclusion

The proposed approach provides a flexible method for analyzing right-censored
lifetime data with random covariates and frailties, making it a valuable tool for
applications in personalized medicine and hospitals evaluation. Some analyses
are currently being accomplished on this regard and they will be the object of
future work.
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