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ABSTRACT: Multi-view clustering methods are essential for the stratification of pa-
tients into sub-groups of similar molecular characteristics. Recently, a wide range of
methods has been developed for this purpose. However, due to the high diversity of
cancer-related data, a single method may not perform sufficiently well in all instances.
We present a multi-view hierarchical ensemble clustering framework of methods. We
apply and validate it on real-world multi-view cancer patient data. Our approach out-
performs the current state-of-the-art in all but one case. It is integrated into our Python
package Pyrea [https://github.com/mdbloice/Pyrea].
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1 Introduction

Multi-view data contain information relevant for the identification of patterns
or clusters that allow us to specify groups of subjects or objects. This presen-
tation is based on (Pfeifer et al., 2023) with a focus on patients for which we
have bio-medical and/or clinical observations describing their characteristics
obtained from various diagnostic procedures or different molecular technolo-
gies. The different types of subject characteristics constitute views related to
the patients of interest. Integrative clustering of these views facilitates the de-
tection of patient groups, with the advantage of improved clinical diagnostic
and treatment schemes.

Simple integration of single view clustering results is not appropriate for
the diversity and complexity of available medical information. Even state-of-
the-art multi-view approaches have their limitations, although ensemble clus-
tering has the potential to overcome some of them (Alqurashi & Wang, 2019).



Data views can stem from highly heterogeneous input sources. Therefore, each
view needs to be clustered with the most adequate strategy. Multi-view clus-
tering methods are widely applied within the bio-medical domain, where often
molecular data are retrieved from different biological layers for the same set
of patients. Those clusters inferred from these multi-omics observations facili-
tate the stratification of cancer patients into sub-groups, providing a useful tool
towards precision medicine.

There are two basic types of a multi-view clustering integration, one hori-
zontal and the other vertical (Richardson et al., 2016). Horizontal integration
is the aggregation of homogeneous data views, while vertical integration en-
tails the joint analysis of heterogeneous data views from the same group of
patients. When data are highly diverse with respect to their probability distri-
butions, problems can arise in vertical integration. Simple data concatenation
and the application of single-view methods are most likely to produce biased
results.

Clustering ensembles and multi-view clustering methods should provide
more robust and accurate clustering results compared to an individual clus-
tering algorithm. A wide range of multi-view clustering methods has been
developed, for instance (Xue et al., 2019), (Liu et al., 2021), and (Yang et al.,
2022). Other recent approaches, e. g. (Rappoport & Shamir, 2019), (John
et al., 2020), and (Pfeifer & Schimek, 2021), have specialised in biomedical
applications such as disease subtype detection. However, only a few contri-
butions have investigated the possibility of combining the strengths of both
ensemble clustering and multi-view clustering to further improve consistency
and accuracy. Here, in contrast to the above-mentioned as well as many other
methods, we aim at a generic theoretical and practical framework to enhance
flexible ensemble-based multi-view clustering. Our framework is flexible with
regard to those clustering techniques that are most suitable for the considered
data. Furthermore, the framework allows to construct arbitrarily complex en-
semble architectures.

2 The ensemble architecture and proposed methodology

Each view V ∈Rn×p is associated with a specific clustering method c, where n
is the number of samples and p is the number of predictors. In total let us have
N data views. An ensemble, called E , can be modelled using a set of views
V and an associated fusion algorithm f . Let us have V ←[ {(V ∈ Rn×p,c)},
E(V , f ) 7→ Ṽ ∈ Rn×n, and V ←[ {(Ṽ ∈ Rn×n,c)}. From these equations we
can see that a specified ensemble E creates a view Ṽ ∈ Rn×n which again can



be used to specify V , including an associated clustering algorithm c. With this
concept it is possible to stack layer-wise views and ensembles into arbitrarily
complex ensemble architectures. It should be noted, however, that the resulting
view of a specified ensemble E forms an affinity matrix of dimension n× n,
and thus only those clustering methods which are compatible with an affinity
or distance matrix as input are applicable. The data views are clustered with
up to N different hierarchical clustering methods hc1,hc2, . . . ,hcN , where N is
the number of views. The best combination of clustering methods is inferred
by a genetic algorithm, where the silhouette coefficient is adopted as a fitness
function. For technical details see (Pfeifer & Schimek, 2021). The Pareahc
ensemble approach comprises two different strategies: Parea1

hc is limited to
the application of two selected hierarchical clustering methods, while Parea2

hc
allows for a variation of hierarchical clustering methods in the data fusion
process. Based on machine learning benchmark data sets, a comparison with
state-of-the-art methods, such as multi-view spectral clustering and multi-view
k-means clustering, was carried out in support of the described approach.

3 Multi-omics clustering for disease subtype discovery

We applied our methodology to a set of real patient data, often used as bench-
mark data (Rappoport & Shamir, 2018), of seven different cancer types, namely
glioblastoma multiforme (GBM), kidney renal clear cell carcinoma (KIRC),
liver hepatocellular carcinoma (LIHC), skin cutaneous melanoma (SKCM),
ovarian serous cystadenocarcinoma (OV), sarcoma (SARC), and acute myeloid
leukemia (AML), aiming at the externally known survival outcome. The Pareahc
ensemble approach was studied on multi-omics data, including gene expres-
sion (mRNA), DNA methylation, and micro-RNA. Pareahc was compared
with SNF (Wang et al., 2014), NEMO (Rappoport & Shamir, 2019), HCfused
(Pfeifer & Schimek, 2021), and PINSplus (Nguyen et al., 2019). It is impor-
tant to mention that the cancer patients were exclusively clustered based on
their genomic footprints.

The survival data of all patients were used for the validation of the obtained
patient clusters. For the quantification of differences between the studied meth-
ods, the Cox log-rank test was applied. The obtained p-values are displayed
in Table 1. Our Pareahc ensembles outperform the alternative approaches in
almost all cases. SKCM is the only cancer type for which HCfused achieved
a superior result. Notably, the spectral-based clustering methods NEMO and
SNF performed poorly.



Table 1. Survival analysis of TCGA cancer group clusters

Cancer type Sample size SNF PINSplus NEMO HCfused Parea1
hc Parea2

hc
GBM 538 0.1304 0.2223 0.0347 0.0997 0.0447 0.0347
KIRC 606 0.3962 0.4005 0.3464 0.0561 0.0137 0.0400
LIHC 423 0.5357 0.6731 0.4354 0.2062 0.0334 0.0436
SKCM 473 0.5153 0.3956 0.4565 0.0699 0.1677 0.1629
OV 307 0.4042 0.5300 0.3593 0.2594 0.1685 0.2870
SARC 265 0.1622 0.2024 0.0979 0.0408 0.0076 0.0109
AML 173 0.0604 0.1973 0.0440 0.1148 0.0167 0.0502
Results based on (Pfeifer et al., 2023): Median p-values of the Cox log-rank test. Significant

results (α = 0.05) for the separation of patient cluster survival curves in bold.
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