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ABSTRACT: Methods to handle common data problems for longitudinal hidden Markov
models are presented. A missing data mechanism that assumes state-dependent and
variable dependent missingness is introduced. High dimensionality is controlled for
with the use of an explicit dimension reduction algorithm.
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1 Introduction

Hidden Markov models (HMMs) are dependent mixture models wherein
the unobserved process is governed by a Markov process. Traditionally HMMs
are used to model time series data and recently have been used to model the
movement of subjects across time, i.e., longitudinal data. Due to the abundance
of multivariate longitudinal data arising from clinical studies, HMMs have be-
come increasingly useful to the health sciences. This data type, however, is
commonly plagued by missing data as individuals miss visits or drop-out of
studies. Classically, we account for missing data through one of two means:
the inclusion of only individuals with complete data or variable mean imputa-
tion. Both of which can introduce bias into analysis results due to reduction in
the information provided or by distorting the information provided. Alternative
to these pre-processing missing data methods, is the use of model fitting algo-
rithms that can be altered to handle missing data at each iteration. One such
algorithm is the expectation-maximization (EM) algorithm (Dempster et al.,
1977). We adopt this approach and develop a modified EM for longitudinal
HMMs with informative missing data. In addition to missing data, approaches
for handling high dimensionality and uninformative variables must be devel-
oped for longitudinal HMMs. Many implicit and explicit dimension reduc-
tion methods exist for independent mixture models. We focus on explicit di-
mension reduction, and extend the vscc algorithm (Andrews & McNicholas,
2014) to longitudinal HMMs.



2 Background

2.1 Longitudinal hidden Markov models

Longitudinal hidden Markov models contain an unobservable first-order
Markov chain Sit , i = 1, ...,n, t = 1, ..,T and an observed process Yit represent-
ing the response vector of individual i at time t. The simplest model of this
kind can by summarized by

Pr(St
i1|St−1

i1 ) = Pr(St |St−1), i = 1, ...,n, t = 2,3, ...,T (1)

Pr(Yit |Yt−1
i1 ,St

i1) = Pr(Yit |Sit), i = 1, ...,n, t = 1,2, ...,T (2)

where St
i1 represents the history of the unobserved parameter process for in-

dividual i, from time 1 to time t, with state space S = 1, ...,m,and Yt
i1 repre-

sents the history of the state-dependent process. The HMM parameters in-
clude both the parameters from the Markov chain and the state-dependent
distribution, often taken to be Gaussian. The Markov chain parameters in-
clude the transition matrix Γ where γit jk = P(Sit = k|Sit−1 = j) and the initial
probabilities δ where δi j = P(Si0 = j). The simplest model assumes homo-
geneity, thus γit jk = γ jk and δi j = δ j. To ease calculation of the likelihood,
we introduce forwards and backwards probabilities. The forwards probabili-
ties is defined as such αit( j) = P(Y(t),Sit = j) = δP(Yi1)ΓP(Yi2) . . .ΓP(Yit)
and the backwards probabilities are defined as βit( j) = P(YT

it+1,Sit = j), thus
β
⊤
it = ΓP(Yit+1) . . .ΓP(YiT )1⊤. The likelihood is as follows

LT =
n

∏
i=1

δP(Yi1)ΓP(Yi2) . . .ΓP(YiT )1⊤ (3)

and can be redefined with respect to the forwards or backwards probabilities
via LT = ∏

n
i=1 αitβ

⊤
it or LT = ∏

n
i=1 αiT 1⊤.

2.1.1 Model estimation

Various versions of the EM algorithm for HMMs exist, in this paper we
use the Baum-Welch algorithm (Baum et al., 1970; Welch, 2003) to obtain
maximum likelihood estimates. The Baum-Welch algorithm is based on max-



imization of the complete-data log-likelihood, as seen below
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n
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i=1

{ m

∑
j=1

ui0 jlogδ j+
T

∑
t=1

m

∑
j=1

m

∑
k=1

vit jklogγ jk+
T

∑
t=0

m

∑
j=1

uit jlog f (yit |Sit = j)
}
.

(4)
The E-step consists of calculating expectations of the missing data, uit j =
P(Sit = j|YT

i1) and vit jk = P(Sit−1 = j,Sit = k|YT
i1,). The M-step consists

of obtaining the maximum likelihood estimates with respect to the expected
complete-data log-likelihood. In particular, the MLE for δ j and γ jk with re-
spect to uit j and vit jk are

δ j =
∑

n
i=1 ûi0 j

n
(5)

and,

γ jk =
∑

n
i=1 ∑

T
t=1 v̂it jk

∑
n
i=1 ∑

T
t=1 ∑

m
k=1 v̂it jk

. (6)

Additionally, the state-dependent distribution parameters are estimated in the
M-step, based on the assumed distribution.

2.2 Missing data

Missing data for model-based clustering is a well studied problem, begin-
ning with Eirola et al. (2014). The data is first partitioned into the observed
and unobserved parts as such (Yo

i ,Ym
i ). By assuming the joint distribution of

the missing and observed part to be Gaussian, we can obtain the conditional
distribution of the missing part given the observed part as

(Ym|Yo)∼ N (µm +ΣmoΣ
−1
oo (Y

o −µo),Σm|o) (7)

(Anderson, 2003). Based on these assumptions the conditional expecta-
tion of the missing data and the conditional covariance matrices can be deter-
mined and used in the EM algorithm to account for missingness. We extend
this method to longitudinal HMMs and add in methods to handle informative
missingness.

2.3 Variable selection

The vscc algorithm, proposed by Andrews & McNicholas (2014), selects
variables based on minimization of within-cluster variance and correlation to
the set of selected variables. The vscc algorithm tends to be much faster and



perform better than step-wise variable selection methods where model fitting
occurs at every inclusion/exclusion step.

3 Methodology

Similar to Sportisse et al. (2021), we modify the Baum-Welch algorithm
to allow for state-dependent and variable-dependent missingness. We do so by
adjusting the definitions of the forwards and backwards probabilities, which
are then used to update the E and M steps. Additionally, E and M steps are
added to implement conditional mean and covariance imputation and to esti-
mate the missingess parameters.
The modified Baum-Welch algorithm is used within the vscc algorithm, to
allow for simultaneous handling of missing data and uninformative variables.
The mathematical results and full model estimation algorithm will be given in
the full paper, as well as illustrations on real and simulated data
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