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ABSTRACT: In this work, classification of distributional data is addressed, where
units are described by histogram-valued variables. The proposed approaches aim
at extending the linear discriminant method developed for two-class classification to
multiclass classification. This method is then applied to discrimination of network
models. The goal is to identify the network model used to generate the networks,
considering the distribution of four centrality measures.
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1 Introduction

The need to analyse complex data makes it necessary to innovate and develop
new statistical methods. In the Symbolic Data Analysis (SDA) framework
the cells of data arrays may contain finite sets of values/categories, intervals
or distributions, representing the variability associated with each unit (Brito,
2014). In Dias et al. , 2021, a linear discriminant method for distributional data
was proposed. The model aims at obtaining a linear combination of features,
now defined by distributions or intervals, that characterize the units and that
allows classifying them in different a priori groups.

2 Histogram-valued variables

This work focus on histogram-valued variables, a particular type of distributional-
valued variables. For each unit i, the observation of this type of variables



is a histogram X(i) = {IX(i)1, pX(i)1; IX(i)2, pX(i)2; ...; IX(i)m, pX(i)m}, where IX(i)l
represents the subinterval l, pX(i)l is the weight associated with the subinter-
val IX(i)l and ∑

m
l=1 pX(i)l = 1. The subinterval IX(i)l may be represented by its

bounds or by its center, cX(i)l and (half)-range, rX(i)l . Within each subinter-
val, a uniform distribution is assumed. Each realisation of the variable can be,
alternatively, represented by the quantile function:

ΨX(i)(t) =



cX(i)1 +
(

2t
w1
−1
)

rY (i)1 if 0≤ t < w1

cX(i)2 +
(

2(t−w1)
w2−w1

−1
)

rY (i)2 if w1 ≤ t < w2

...

cX(i)m +
(

2(t−wm−1)
1−wm−1

−1
)

rY (i)m if wm−1 ≤ t ≤ 1

(1)

where wi` =
`

∑
h=1

ph, `∈ {1, . . . ,m}, and m is the number of subintervals in X(i).

The empirical quantile functions are the inverse of cumulative distribution
functions, which under the uniformity hypothesis are piecewise linear func-
tions with domain [0,1] . Even though the space of the quantile functions is
only a semi-vector space, the arithmetic operations are simpler with this rep-
resentation, which is preferred to represent histogram-valued data.

The Mallows distance is considered as an adequate measure to evaluate
the similarity between distributions. The criterion to be optimized to define
linear models is based on this distance. Assuming that the “values” of the
histogram-valued variables X and Y are represented by the quantile functions
ΨX and ΨY , both with m pieces and the same set of weights, {p1, . . . , pm},
the Mallows distance between them can be written as DM(ΨX(t),ΨY (t)) =√∫ 1

0 (ΨX(t)−ΨY (t))2 dt.
Given a set of n units, we may then compute the barycentric histogram, Xb,

represented by the quantile function ΨXb(t), as the solution of the minimization

problem min
n

∑
i=1

D2
M(ΨX(i)(t),ΨXb(t)). The optimal solution, the barycentric

histogram, Xb, is a histogram where the centre and half range of each subinter-
val ` is the classical mean, respectively, of the centres and of the half ranges `,
of all units i (Irpino & Verde, 2006).



3 Linear Discriminant Analysis

3.1 Linear Discriminant Function

Since the space of quantile functions is a semi-vector space, the definition
of linear combination for histogram-valued variables proposed in Dias et al.
, 2021 uses the quantile function of the observed histograms ΨX j(i)(t), to-
gether with those of the corresponding symmetric histograms −ΨX j(i)(1− t),
j = 1, . . . , p. The score of unit i is the quantile function:

ΨS(i)(t) =
p

∑
j=1

a jΨX j(i)(t)−
p

∑
j=1

b jΨX j(i)(1− t) (2)

with t ∈ [0,1] ; a j,b j ≥ 0, j ∈ {1,2, . . . , p} .
The function to optimize in order to obtain the coefficients of the linear

discriminant function, a j,b j, j = 1, . . . , p, is based on the total inertia decom-
position with respect to a barycentric histogram, defined with the Mallows dis-
tance. Irpino & Verde, 2006 proved that the total inertia may be decomposed
into within and between classes inertia, according to the Huygens theorem.
The coefficients of the discriminant function are then obtained by maximizing
the ratio of the between to the within classes inertia, subject to non-negativity
constraints. This defines a constrained fractional quadratic problem that is
non-convex and finding the global optima requires a high computacional ef-
fort. Softwares like BARON, that use the Branch and Bound technique, may
be used to obtain a good solution. To confirm that the solution is optimal is
only possible using conic relaxation techniques (Dias et al. , 2021).

3.2 Classification

For the classification of a unit in one of the two groups, the Mallows distance
between its score and the score obtained for the barycentric histogram of each
class is computed. The observation is then assigned to the closest class (with
random assignment in case of equality).

When considering more than two a priori classes, there are two ideas that
arise:

1. Divide the multi-class classification dataset into several binary classifica-
tion subproblems. In this case, identifying the best multi-class classifier
involves finding the best binary classifiers. In other words, we are ex-
tending the already existing binary class classifier. Concerning this ap-



proach, there are two well-known multi-class classification techniques:
(a) One-Versus-One (OVO); (b) One-Versus-All (OVA).

2. Define several linear discriminant functions, maximizing the same cri-
terion, under the condition that each new discriminant function must be
uncorrelated with all previous ones. This imposes new constraints in
addition to the non-negativity of the coefficients. This idea is referred
to as Consecutive Linear Discriminant Functions (CLDF). This leads to
several score histogram-valued variables with null symbolic linear corre-
lation coefficient.

4 Application - Network Data

The network data was artificially obtained. Fifty six networks were constructed,
considering the Erdős-Renyi, Watts-Strogatz and Barabási-Albert models, with
parameters carefully chosen. Each network is described by the distribution
over the network’s nodes of standard graph measures: nodes’ degree, be-
tweenness centrality, closeness centrality and eigenvector centrality, as done
in Giordano & Brito, 2014. To obtain symbolic data sets aggregations were
performed, where the first-level units were the nodes and the higher-level units
were the network to which the nodes belong. Therefore, the dataset has 168
units and four histogram-valued variables. The classification goal is to identify
the model used to develop each network. The OVA strategy displays the worst
performance, OVO performs extremely well, regardless of the model used to
produce the networks, and tends to perform better than CLDF.
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