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ABSTRACT: The classical data representation model is too restrictive when the data
to be analysed are not real numbers but comprise variability. In this talk, we are in-
terested in numerical distributional data, where units are described by histogram or
interval-valued variables. We consider parametric probabilistic models, which are
based on the representation of each distribution by a location measure and interquan-
tile ranges. A multivariate outlier detection method is proposed that makes use of
restricted configurations for the covariance matrix, and is based on a sparse robust
estimator of its inverse. The computations rely on an efficient adaptation of the graph-
ical lasso algorithm. A simulation study puts in evidence the usefulness of the robust
estimates for outlier detection.
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1 Introduction

Multivariate datasets often include atypical data points known as outliers, i.e.
points that deviate from the main pattern. Outlier detection is important be-
cause outlying data points may reveal nonconforming phenomena and the re-
sults of usual multivariate methods can be heavily influenced by them.

In this paper we address the problem of outlier detection in multivariate
distributional data. Distributional data may result from the aggregation of large
amounts of open/collected/generated data, or may be directly available in a
structured or unstructured form, describing the variability of some features.
In recent years, different approaches have been investigated and methods pro-
posed for the analysis of such data. However, most existing methods rely on
non-parametric descriptive approaches.



A common approach for multivariate outlier detection measures outlying-
ness by Mahalanobis distances. Given a sample of n observations, a point i is
considered an outlier if its distance D2

µ̂,Θ̂
(i) from an appropriate mean estimate,

µ̂, is above a relevant threshold. Here, Θ̂ is an estimate of the precision ma-
trix, Θ = Σ−1, and Σ denotes the population covariance. However, if µ̂ and Θ̂

are chosen to be the classical sample mean vector and inverse covariance ma-
trix, S−1, this procedure is not reliable, as D2

µ̂,Θ̂
(i) may be strongly affected by

atypical observations. Furthermore, S−1 has a large sample variability when its
dimension, d, is close to n, and it is is not even computable when d > n. To ad-
dress these issues Öllerer and Croux (Öllerer & Croux, 2015), proposed sparse
precision matrix estimators based on the GLASSO L1-penalized log-likelihood
function (Friedman et al. , 2008).

In this paper we address the problem of outlier detection in distributional
data, combining Öllerer and Croux estimators with a parametric modelling of
distributional data, along the lines of Brito & Duarte Silva, 2012, and
Duarte Silva et al. , 2018.

2 Distributional Variables

Let S = {s1, . . . ,sn}, be the set of n units under analysis. We consider that for
each unit, the descriptive variables are (in general) not constant, but present
variability.

We represent the “values” of a numerical distributional variable by an or-
dered vector of quantiles, always including the minimum and the maximum.
Formally, a numerical distributional variable is defined by an application

Y : S→ T
si→ Y (si) = (Mini,ψ1i, . . . ,ψqi,Maxi)

Let Y1, . . . ,Yp be the p numerical distributional variables, defined on S.
Here we assume that all variables are represented by the same set of q+ 2
quantiles, and that Mini j < ψ1i j < .. . < ψqi j < Maxi j, 1 ≤ i ≤ n, 1 ≤ j ≤ p
(strict inequalities).

The model consists in representing Yj(si) by

• a central statistic Ci j, typically the Median Medi j or the MidPoint Maxi j+Mini j
2

• the [Min,ψ1[ range: R1i j = ψ1i j−Mini j
• the [ψ1,ψ2[ range: R2i j = ψ2i j−ψ1i j
• . . .



• the [ψq,Max[ range: Rmi j = Maxi j−ψqi j

Typical cases consist in using the median, or else the midpoint, as central
statistics, and quartiles, or other equally-spaced quantiles.

The proposed model consists in assuming that the joint distribution of the
central statistic C and the logarithms of the ranges R∗` , `= 1, . . . ,m, is Gaussian:

(C,R∗1, . . . ,R
∗
m)∼ N(m+1)p(µ,Σ)

In the most general formulation (configuration 1) we allow for non-zero
correlations among all central statistics and log-ranges; for distributional vari-
ables there are however other cases of interest: the distributional-valued vari-
ables Yj are non-correlated, but for each variable, the central statistic and all
its log-ranges may be correlated among themselves (configuration 2); central
statistics (respectively, log-ranges) of different variables may be correlated, but
no correlation between central statistics and log-ranges is allowed (configura-
tion 3); central statistics (respectively, each log-range) of different variables
may be correlated, but no correlation between central statistics and log-ranges
or between non-corresponding log-ranges is allowed (configuration 4); and,
finally, all central statistics and log-ranges are non-correlated (configuration
5).

3 Outlier Detection of Distributional Data

Let Xi =
[
Ct

i ,R
∗
1i

t , . . . ,R∗mi
t]t be the d = (m+ 1)p dimensional column vector

comprising all central statistics and log-ranges for si, i = 1, . . . ,n.
The identification of outliers is based on robust Mahalanobis distances,

D2
µ̂,Θ̂

(i) = (xi− µ̂)tΘ̂(xi− µ̂) from each data point to a robust location vector, µ̂,
which are then compared with the 97.5% quantile of a chi-squared distribution
with d-degrees of freedom. In our approach we choose as location vector, the
L1 median (Fritz et al. , 2012), which has a break-down point of 0.5 and, given
our Gaussian assumption, is a robust estimator of µ.

Following Öllerer and Croux (2015) we estimate Θ = Σ−1 by

Θ̂ = argmaxΘ∈ϑ logdet(Θ)− tr(Σ̂Θ)−ρ

d

∑
j,k=1
|(Θ) jk| (1)

where ϑ := {Θ∈Rd×d : Θ� 0} is the space of d-dimensional positive-definite
matrices, Σ̂ is a robust covariance estimate, and ρ a regularization parameter.

For each covariance configuration, we set the null elements of Σ to zero in
its initial Σ̂ estimate, and for the remaining elements we use the formula



Σ̂ j,k = scale(X j)scale(Xk)r(X j,Xk) (2)

where X j,Xk are the jth and kth columns of X , scale(X j),scale(Xk) are ro-
bust scale estimators (see Rousseeuw & Croux, 1993), and r(X j,Xk) is the
Gaussian rank correlation (Boudt et al. , 2012) between X j and Xk.

The above procedure was evaluated in a controlled simulation experiment
that showed promising results for the proposed approach.
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