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ABSTRACT: In Data Science, entities are usually described by single-valued mea-
surements. Symbolic Data Analysis (SDA) can model more complex data structures
such as intervals and histograms that possess internal variability. In this work, we
propose an extension of the multi-class Fisher Discriminant Analysis to the interval
case based on Mallows’ distance and Moore’s algebraic structure. Similarly to the
conventional case, test observations can be wrongly classified. However, the ques-
tion is whether the observation is wrongly classified or there exists a labelling switch.
Problem may also arise when an observation is atypical. We adress the symbolic data
classification problems outline above and use the Mallows’ distance adapted to extend
classmaps and farness to the SDA setting. Real data is used to illustrate our approach.
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1 Introduction

Classification is of utmost importance in data science, and the symbolic com-
munity is fully aware of that. In a classification problem, the aim is to create
a decision rule that assigns a label (or class) to an object (observation) by
studying a set of measurements (or variables) characterizing the objects. Con-
ceptually, we can divide the space of the original set of variables into different
regions, each associated with one specific label. Sometimes, in the list of vari-
ables available, there are a few that do not contribute to the separation of the
classes (named irrelevant) or only have repeated information about the objects
(called redundant). A common possible way to circumvent these problems is



to project the observations in a space of lower dimension that turns the sepa-
ration between classes clearer, which in principle leads to better classification
performance. Conventional Fisher discriminant analysis uses this strategy, by
finding the directions α ∈Rp that best separate the different classes in the pro-
jected space: Z = αT X , where X = (X1, . . . ,Xp)

T ∈Rp, p ∈N, is a real-valued
random vector with E(X |Y = j) = µ j ∈ Rp, Var(X |Y = j) = Σ ∈ Rp×p, for
j = 1, . . . ,g, and Y represents the class of a given observation, called class-
variable. Assuming that within a class the variances of X |Y = j, j = 1, . . . ,g,
are equal, we can compute a pooled sample covariance matrix, S, to estimate
Σ, and the Fisher problem can be formulated as the following maximization
problems to estimate the sample i-th discriminant vector, α̂i

α̂i =


arg max

α: αT Sα = 1

αT Bα

αTWα

α̂
T
j Sα = 0, j ∈ {1, . . . , i−1}

, i = 1, . . . ,s ≤ min{g−1, p},

where W = (n− g)S, B = ∑
g
j=1 n j(x j − x)(x j − x)T , x is the overall sample

mean, x j is the sample mean on the j-th class, n j is the sample size of the j-th
class, and n = n1 + . . .+ng is the total sample size. Moreover, it is known that
T = B+W , with T = ∑

g
j=1 ∑

n j
h=1(xh j − x)(xh j − x)T , where xh j represents the

observed measurements on the h-th object of the j-th class.
For interval-valued data, the sum of squared total verifies T = B+W , and

it can be extrapolated using the Mallows’ distance instead of the usual Eu-
clidean distance (see Irpino & Verde, 2006), which combined with Moore’s
definition of linear combination leads to the following maximization problems
for interval-valued variables:

αi =


arg max

α: αT Sα = 1

αT BCα+δ|α|T BR|α|
αTWCα+δ|α|TWR|α|

αT
j Sα = 0, j ∈ {1, . . . , i−1},

where |α| = (|α1|, ..., |αp|)T , Bl (W l) is the between (within) sum of square
matrix, defined before, based on the centers of the p-dimensional interval-
valued observations, if l =C, and on its ranges when l = R.

Estimating the first r ≤ s directions, {α̂1, . . . , α̂r}, a new observation x0 is
assigned to the k-th class, k ∈ {1, . . . ,g}, whenever

k = arg min
j∈{1,...,g}

r

∑
t=1

d2
M(α̂T

t x0, α̂
T
t x j),



where dM(x,y) represents the Mallows’ distance between x and y, two p-
dimensional interval-valued observations.

To evaluate the performance of the classifier, we split the dataset into the
training set, used to estimate the classification rule, and the test set used to
independently assess its performance. The test set observations are classified,
and the assigned class is compared with the true class to construct the confu-
sion matrix, based on which several global and local measures of performance
can be computed.

The classes of the dataset observations are assumed to be mistake free,
but with real data, this may not be always true. Moreover, data may contain
outlying observations that, even though correctly classified, may reveal atyp-
ical patterns when compared with its class or any other class under study. In
Raymaekers et al., 2022 and Raymaekers & Rousseeuw, 2022, the authors pro-
posed graphical displays whose goal is to visualize aspects of the classification
results to obtain insight into the data, adding interpretability to the results sum-
marized by the confusion matrix. The problem of label switching or atypical
observations can be discussed with the help of these plots. In this work, we
extend these ideas to the classification problem for interval-valued data. These
generalizations rely on the Mallows’ distance and we exemplify their relevance
and applicability using real examples.
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