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ABSTRACT: Classifying gene expression profiles can be challenging due to their low
sample size and high dimensionality. Existing methods employed often lack inter-
pretability or sparsity, and require extensive data preprocessing. Ensemble methods,
such as the Set Covering Machine, enable the construction of classifiers depending
only on base classifiers. We propose two novel base classifiers that consider rela-
tions between features for constructing interpretable decision functions, denoted fold
change classifiers. Here, an intrinsic feature selection and a straightforward seman-
tic and syntactic interpretation can be achieved. The proposed classifier no longer
depends on equally scaled data since relative measurements within a sample are con-
sidered. The applicability of the proposed method is shown in a case study evaluating
neuroendocrine tumors.
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1 Introduction

Classification in light of potentially formulating biological hypotheses often
entails classifying high-dimensional data, where the number of samples is
greatly outnumbered by the number of dimensions of each sample (Lausser
& Kestler, 2013; Marchand & Shah, 2004). Each dimension of a sample is
referred to as a feature, and finding distinctions between samples, that only de-
pend on a subset of features, might lead to the formulation of novel biological
hypotheses (Lausser & Kestler, 2013; Marchand & Shah, 2004). Moreover,



discarding irrelevant features can be considered essential in order to obtain
sparse and interpretable classifiers, with high generalization abilities (Marc-
hand & Shah, 2004).
The Set Covering Machine (SCM), enables the construction of a sparse con-
junction of base classifiers (Marchand & Shawe-Taylor, 2003), performing an
intrinsic feature selection when using a single threshold on one feature as a
base classifier. Previous work in this context and these types of classifiers
has been done mainly by (Marchand & Shawe-Taylor, 2003, Valiant, 1984,
Haussler, 1988), and more recently by others (Drouin et al., 2016; Drouin
et al., 2019; Lausser & Kestler, 2013; Schmid et al., 2013; Kestler et al., 2006;
Lausser et al., 2020). A resulting interpretable decision function can be of the
form ”IF f1 ≥ 5 AND f2 < 8 THEN the sample belongs to class . . . ”, with f1
and f2 being features / genes.
When analyzing high-throughput expression profiles the mere over- or under-
expression of single genes might not suffice to identify biologically relevant
genes (Shi et al., 2005). Therefore, considering relations between different
gene expressions, by pairwise comparing expressions could lead to the iden-
tification of global behaviors and point to biological processes involved (Shi
et al., 2005). This motivates base classifiers of type f1 < f2 or f1/ f2 ≥ t where
t is a threshold, relating the two features considered. These base classifiers may
be less susceptible to noise, as well as exhibit invariance properties (Lausser &
Kestler, 2013). This allows the discovery of similar tendencies among different
samples, without depending on identical nomalization of the data.

2 Results

Contrary to the originally published SCM, which constructs a classifier de-
pending on a subset of provided samples (Marchand & Shawe-Taylor, 2003),
we are able to construct a sparse classifier, depending only on a subset of fea-
tures, while eliminating concerns about normalization and data-preprocessing.
Due to the interpretable decision functions, learnt by our proposed method, a
genotype-to-phenotype relation can be established, potentially revealing novel
biological mechanisms.
We employed the proposed method in a case study dealing with pancreatic neu-
roendocrine tumours (PanNETs). PanNETs are rare but quite heterogeneous
tumour entities lacking specific biomarkers for disease progression. The re-
sulting decision function, an ensemble of order relations, is sparse and yields
perfect reclassification contrary to other classification methods employed on
this data. Here, the gene relations involved in the decision functions could be



validated via a literature search, suggesting mechanistic interactions to be fur-
ther investigated. The restriction to the evaluation of order relations reduces
the gained flexibility of the presented base classifiers. This can be further vali-
dated by the sparsity of the decision function, implying that the base classifier
involved carry much information.
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