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ABSTRACT: In the analysis of spatial transcriptomic experiments, the recently pro-
posed SpaRTaCo model (Sottosanti & Risso, 2022) allows for the simultaneous clus-
tering of genes and cells of a tissue sample, providing interesting insights abouve the
underlying biological processes. In this work, we discuss how to integrate external
knowledge such as manual cell-type annotations to inform gene clustering, with the
by-product of substantially reducing the computational burden.
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1 Introduction

Spatial transcriptomics is an innovative class of sequencing technologies, capa-
ble of providing the expression levels of thousands of genes in a tissue sample
while retaining the spatial conformation of the analyzed tissue. With the aid of
additional spatial information, researchers can better understand the complex
biological processes that depend on the cellular organization of the tissue. New
insights come from the discovery of spatially expressed (s.e.) genes, i.e., genes
that exhibit specific patterns of variation in space (Svensson et al., 2018).

Recently, we proposed SpaRTaCo (Sottosanti & Risso, 2022), a co-clustering
model for spatial transcriptomic experiments, which has shown to be capable
of determining s.e. genes active only in specific areas of a sample, provid-
ing insights that could not be achieved by competing methods in the literature.
Clearly, it represents a useful tool for spatial transcriptomic data analysis; nev-
ertheless, its estimation process is highly computationally demanding.

Here, we propose a modification of the original SpaRTaCo formulation
that integrates external biological knowledge to speed up the computation. In



fact, spatial experiments often come with a manual annotation of the cellular
composition of a sample made by a pathologist, providing a relevant source of
information that can be integrated into the inferential process. Furthermore, we
propose to estimate SpaRTaCo with a penalized maximum likelihood approach
to prevent the model from capturing spurious spatial correlation, retaining rel-
evant patterns only. We conclude with the analysis of a prostate cancer tissue
sample analyzed with a recent spatial transcriptomic technology.

2 The semi-supervised SpaRTaCo with L1 and L2 penalizations

Let X be the n× p matrix of a spatial experiment having the expression of
n genes measured over p spots, whose spatial locations are known. SpaR-
TaCo assumes the existence of K gene clusters and R spot clusters, inducing
a partition of the experiment matrix into K ×R blocks. Thus, the kr-th block
has dimension dim(Xkr) = nk × pr, and X =

(
Xkr

)
, with k = 1, . . . ,K and

r = 1, . . . ,R. The expression of the i-th gene with the kr-th block distributes as

xkr
i. |σ2

kr,i ∼ Npr
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µkr1pr ,σ

2
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)
, σ

2
kr,i ∼ I G(αkr,βkr) (1)

where µkr is a mean parameter, 1pr is a vector of ones of length pr, σ2
kr,i is a

gene-specific variance, and ∆∆∆kr is the covariance matrix of the spots with form

∆∆∆kr = τkrK (Sr;φr)+ξkr1pr . (2)

Notice that ∆∆∆kr is expressed as a linear combination of two matrix terms: the
first is a kernel matrix with isotropic spatial covariance function k(·;φr) that
models the gene expression correlation across the spots of cluster r (with spa-
tial coordinates Sr = (s j)), the second is an identity matrix of size pr. The pa-
rameters τkr and ξkr quantify the amount of spatial variation and residual intra-
block variability, respectively. Moreover, the quantity τkr/ξkr can be used to
measure the amount of spatial variability compared to the residual variability,
and for this reason it is called spatial signal-to-noise ratio. Last, the param-
eter σ2

kr,i in (1) is used to model the variance specific of gene i in the kr-th to
account for the possible dependence across genes in the same cluster.

Even though SpaRTaCo is designed for clustering both rows (genes) and
columns (cells) of X, when a manual annotation of the tissue image is avail-
able, we can include it in the model in place of the column clustering labels
to inform the inferential process. In addition, to improve the stability of pa-
rameter estimation, we can estimate the model with a penalized maximum
likelihood approach. A lasso penalty on the parameters τkr discourages the



Figure 1: Left: human prostate tissue diagnosed with adenocarcinoma. Spot colours
denote Dr. Esposito’s annotation (red spots are not considered as they appear only 5
times). Right: spatial distribution of gene VIM.

model from capturing spurious correlation when no spatial effect is present,
while a ridge penalty regularizes the mean parameters µkr since zero values do
not have a clear biological meaning. The estimates of the model parameters
Θ = ∪r{∪k (µkr,τkr,αkr,βkr) ,φr} and of the clustering labels Z are obtained
maximizing

logL (Θ,Z|X,W )−λτ

K

∑
k=1

R

∑
r=1

|τkr|−λµ

K

∑
k=1

R

∑
r=1

µ2
kr, (3)

where W is the vector containing the spot clustering labels that come with the
data, logL (Θ,Z|X,W ) is the classification log-likelihood, and λτ and λµ are
the penalization terms associated to the τ and µ parameters, respectively. Sim-
ulation studies not reported here showed that λµ = 1.5 and λτ = 0.3 guarantee
robust parameter estimates and prevent the model from capturing spurious spa-
tial correlation. Notice that the parameters ξkr are not estimated, but are fixed
a priori, for identifiability reasons. An exact solution to the maximization of
(3) can be obtained using a classification EM algorithm.

3 Application to human prostate cancer data

We analyze a human prostate tissue diagnosed with adenocarcinoma pro-
cessed with 10X-Visium platform (Righelli et al., 2022). The slide was man-
ually annotated by the pathologist Dr. Esposito (Veneto Oncology Institute,
Italy), by analyzing microscope images that consider the cytoarchitecture of



the cells, i.e., the spatial organization and arrangement of cells within the tis-
sue. Based on these characteristics, the tissue was divided into four macro
categories: fibroblasts, glands, stroma, and tumour (Figure 1, left). After pre-
liminary gene filtering and count normalization (Townes et al., 2019), the final
dataset had 1000 genes measured over 4366 locations (spots).

We estimated the semi-supervised SpaRTaCo using K ∈ {1, . . . ,9} and, af-
ter evaluating the integrated complete log-likelihood criterion and the cluster-
ing uncertainties (Sottosanti & Risso, 2022, Section 3.3 and 3.4), we selected
the model with K = 5 gene clusters. The first two clusters that the model iden-
tifies have a substantial spatial variability in all tissue areas (τ̂kr/ξ̂kr > 1.5, for
k = 1,2 and ∀r) and particularly pronounced in the tumour area (τ̂14/ξ̂14 =

7.12, τ̂24/ξ̂24 = 2.46). In comparison, the remaining three gene clusters have
moderate or absent spatial variability throughout the tissue and show substan-
tial differences only at the mean level.

Thanks to gene-specific variance parameters σ2
kr,i, we can provide a list of

the most variable genes in every tissue area. As an example, the gene VIM
appeared among the 20 most variable genes in the stromal region (Figure 1,
right). VIM is a cancer growth promoter gene, and therefore, from this ob-
served expression pattern, it can provide helpful information about the nature
of the tumour and be the starting point for biological investigations. Alterna-
tive algorithms for selecting highly variable genes (e.g., Townes et al., 2019)
do not include VIM among the top 80 most informative genes, showing the
importance of accounting for the spatial variability of the data in the analysis.
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