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ABSTRACT: A potential outcome approach to causal inference is used to infer the average 
exposure-response curve describing the relationship between daily temperature and daily 
mortality in the city of San Sebastian (Spain) for the period 2010-2015. The analysis relies on 
the estimate of the generalized propensity score and specification of a model for potential 
outcomes. The impact of extreme temperatures on population health is also provided, in terms 
of attributable deaths.  
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1 Introduction 

Climate change is now regarded as the greatest challenge of the 21st century. 
Extreme temperature levels are one of its consequences. Many studies, based on the 
analysis of daily time series through regression approaches, have identified a U-, V- 
or J-shaped relationship between environmental temperature and mortality, 
indicating that heat and cold are associated with death counts. For the first time, this 
study estimates this relationship by using a potential outcome approach to causal 
inference. The method proposed is based on the generalized propensity score and 
uses a semi-parametric specification for the outcome model. We ground on the 
method used in Forastiere et al. (2020) for the analysis of the short term effect of air 
pollution on mortality in the city of Milan (Italy).  

2 Data 

The health and exposure data used in this paper have been collected for the city of 
San Sebastian (Basque Country region of Spain) for the period 2010-2015. They 
include the daily number of deaths from natural causes, cardiovascular and 
respiratory causes, grouped by age (0-64, 65-84, 85+); meteorological variables 



(temperature and humidity); and several known confounders of the temperature-
mortality relationship (average pollutant levels and an indicator of influenza 
epidemics). 
 

3 Methods 

The analyses are performed separately for cold and warm season.  
According to the potential outcome framework, under the Stable Unit Treatment 
Value Assumption (Imbens and Rubin 2015), we denote by Yi (z) the potential 
number of deaths in day i (i = 1, 2,…, n) if z were the level of temperature in that 
day. For each day we only observe one potential outcome, that is, the one 
corresponding to the actual exposure of that day, Zi, all the other potential outcomes 
with z ≠ Zi being missing. We denote the observed outcome with Yi, while Xi = (x1i, 
x2i, …, xKi) is the vector of the K covariates measured on day i.  
We are interested in the average Dose Response Function (aDRF), defined as: 
 

µ(z)=n-1∑i Yi (z).                               [1] 
 
Under the unconfoundedness assumption, we fill in missing potential outcomes in 
[1] following the procedure described in Hirano and Imbens (2004), which requires 
the specification of a model for the exposure, used for GPS estimation, and a model 
for the outcome.  
The model for the exposure is a log-Normal model on the daily average temperature 
Zi, given the confounders (Xi) and seasonality terms. The confounders are included 
in the model through flexible functions and interactions are allowed. The GPS for 
day i at the level of exposure z is then defined as the value of the density function for 
log(Z), derived from the estimated model:  
 

r(z, Xi)=(2πs)-1exp[-(log(z)-mi)2/(2s2)], 
 
where mi is the value of log(Z) predicted by the model for day i, and s2 is the 
estimated error variance.  
The model for the outcome is a Poisson regression model on the daily mortality Yi, 
given both daily average temperature Zi and the value of GPS estimated for z = Zi, Ri 
= r(Zi, Xi). Different specifications of the outcome model can be adopted: we define 
a bivariate spline on temperature and GPS.  
Once the two models have been estimated, there is the phase of prediction and 
potential outcome imputation. After defining a grid of temperatures, we calculate, 
for each day, the GPS on each value z* of the grid. Then, we plug in z* and the 
corresponding GPS, r(z*, Xi), in the estimated outcome model, in order to predict 
the mortality level Yi (z*) that would be observed if the temperature in day i were 
equal to z*. Finally, for each z*, the predicted potential outcomes are averaged over 
the days, so that an exposure-response curve is obtained.  



We estimate the aDRF for mortality from all causes and by cause of death, for all 
age and separately by age group. Also, we estimate, in terms of attributable deaths,  
the impact of temperatures higher or lower than specific thresholds on population 
mortality. Confidence intervals are obtained through a block-bootstrap procedure. 
A crucial point in the analysis is the specification of the exposure model. The 
validity of the specification adopted for the exposure model is assessed by checking 
the covariate balance as described in Hirano and Imbens (2004). 

4 Results 

Extreme temperatures, both cold and warm, have a detrimental effect on health. The 
so-called `turning point', defined as the temperature where the aDRF is minimum, is 
found to be around 19.5° C. The analysis by age group confirms these effects for 
people over 65 years of age, while negligible effects are observed for younger 
people (0-64). 
Taking the value of 19.5°C as an optimal threshold for health, we estimate that, in 
the warm season, exceeding it has caused 115 deaths (90% CI: 22.39, 229.31) 
during the study period. In the cold season, staying below the same threshold is 
estimated to have caused 483 deaths (90% CI: 97.21, 836.64). 

5 Discussion 

This study states the existence of a causal relationship between temperature and 
mortality and provides an approach to estimate the average dose-response function, 
as well as the impact of extreme exposures. Extensions of the method could allow 
the estimation of an entire curve on the whole year and the investigation of the 
delayed effect of temperature on mortality.   
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