DISTANCES, ORDERS AND SPACES
 Pascal Préa ${ }^{12}$

${ }^{1}$ Aix-Marseille Université, CNRS, LIS, Marseille, France
(pascal.prea@lis-lab.fr)
${ }^{2}$ École Centrale de Marseille, Marseille, France

Abstract

A dissimilarity d on a set X is said to be Robinson if there exists a total order, said compatible, on X such that $x<y<z \Longrightarrow d(x, z) \geq \max \{d(x, y), d(y, z)\}$. Roughly speaking, d is Robinson if the points of X can be represented on a line $i e$. Robinson dissimilarities generalize line distances.

In this paper, we define k-dimensional Robinson dissimilarities, which generalize the possibility, for a metric set (X, d), to be embedded into a k-dimensional Euclidean space. This generalization is more flexible than the classical embedding and we show that every dissimilarity on an n-set X is $(\log n)$-dimensional Robinson. We give an $O\left(n^{3}\right)$ algorithm which builds such an embedding. This algorithm is based on an incremental algorithm to recognize Robinson dissimilarities.

KEYWORDS: Robinson dissimilarities, embeddings, incremental algorithms.

1 Introduction

Given a finite set set X, a dissimilarity on X is a symmetrical function $X \times$ $X \longmapsto \mathbb{R}^{+}$such that $\forall x \in X, d(x, x)=0$ (we say that (X, d) is a dissimilarity space). Dissimilarities generalize distances (a distance is dissimilarity with the triangular inequality).

Given a dissimilarity on a set X, a fundamental problem is to derive "geometrical" properties of X from d, or to characterize dissimilarities from which such properties can be obtained. For instance Robinson dissimilarities (Robinson 1951) correspond to points on a line. These dissimilarities were invented to solve seriation problems in Archeology, but they are now a classical tool for seriation problems in any field. They are also linked with Pyramids (Diday 1986, Durand \& Fichet 1988), the standard model with overlapping classes. Moreover, they play an important role ro recognize tractable cases for TSP (Çela \& al. 2023).

In this paper, we generalize Robinson dissimilarities to k (-dimensional)Robinson dissimilarities, which represent the fact for X to be embedded into a k-dimensional space. This embedding is less strict than the usual Euclidean
embedding. We show that, if d is a dissimilarity on a set X with $|X|=n$, then d is $(\log n)$-Robinson and we give a $O\left(n^{3}\right)$ algorithm which builds such an embedding. This algorithm is based on an incremental algorithm to recognize Robinson dissimilarities which is presented in the last section.

2 Robinson dissimilarities

A dissimilarity space (X, d) is Robinson if there exists a total order, which is said to be compatible, on X such that

$$
\begin{equation*}
x<y<z \Longrightarrow d(x, z) \geq \max \{d(x, y), d(y, z)\} \tag{1}
\end{equation*}
$$

Let (X, d) a dissimilarity space and $<$ be an order on X. Notice that $<$ is a compatible order of (X, d) (which is thus a Robinson space) if and only if:

$$
\begin{equation*}
x \leq y<z \leq t \Longrightarrow d(y, z) \leq d(x, t) \tag{2}
\end{equation*}
$$

Given a total order $<$ on X and $x, y, z \in X$, we say that y is between x and z for $<$ if $x<y<z$ or $z<y<x$. The set of the elements between x and z is an interval for $<$ and we denote it by $[x, z]_{<}$. Notice that $[x, z]_{<}=[z, x]_{<}$.

3 Multidimensional Robinson dissimilarities

Let (X, d) a dissimilarity space and $k \in \mathbb{N}_{1}$. We say that (X, d) is k-Robinson if there exist k orders $<_{1},<_{2}, \ldots,<_{k}$ such that:

$$
\forall x, y, z, t \in X,\left(\forall 1 \leq i \leq k, y, z \in[x, t]_{<_{i}}\right) \Longrightarrow d(y, z) \leq d(x, t)
$$

We say that (X, d) is k-quasi-Robinson if there exist k orders $<_{1},<_{2}, \ldots,<_{k}$ such that:
$\forall x, y, z \in X,\left(\forall 1 \leq i \leq k, y \in[x, z]_{<_{i}}\right) \Longrightarrow d(x, z) \geq \max \{d(x, y), d(y, z)\}$
If $k=1$, it is equivalent for a dissimilarity space to be Robinson or 1-quasi-Robinson. For $k \geq 2$, then if (X, d) is k-Robinson, then (X, d) is k-quasiRobinson, but the converse is false (see Figure 1). Notice in addition that, if (X, d) is k-(quasi-)Robinson, then (X, d) is $k+1$-(quasi-)Robinson. The smallest k such that (X, d) is the Robinson dimension of (X, d).

If a metric space (X, d) can be embedded into a \mathbb{R}^{k}, then (X, d) is k Robinson. But the Robinson dimension of (X, d) is generally smaller. For instance, if $|X|=n$ and d is the constant dissimilarity, then (X, d) is Robinson (its Robinson dimension is 1) although it needs an $n-1$-dimensional Euclidean space to be embedded. Moreover, we have:

Figure 1. A set X with four points x, y, z, t. If (X, d) is 2-quasi-Robinson with the two orders represented by the two axis, then no condition is imposed on $d(y, z)$ and we can set $d(y, z)>d(x, t)$. If (X, d) is 2-Robinson (with the same orders), then $d(y, z) \leq$ $d(x, t)$.

Proposition 1 The Robinson dimension of a dissimilarity space (X, d) with $|X|=n$ is $\leq\left\lceil\log _{2}\left\lceil\frac{n}{3}\right\rceil\right\rceil+1$.

Algorithm 1 returns an approximate value for the Robinson dimension of a dissimilarity space.

```
Algorithm 1: APPROXIMATE-ROBINSON-DIMENSION
    Input: \((X, d)\), a dissimilarity space.
    Output: An upper bound on the Robinson dimension of \((X, d)\).
    begin
        \(X^{\prime} \leftarrow X ; k \leftarrow 0 ;\)
        Sort-LinEs \((X, d)\);
        while \(X^{\prime} \neq \emptyset\) do
            \(S \leftarrow\) MAXIMAL-ROBINSON-SUBSPACE \(\left(X^{\prime}, d\right)\);
            \(X^{\prime} \leftarrow X^{\prime} \backslash S\);
            \(k \leftarrow k+1 ;\)
        return \(\left\lceil\log _{2} k\right\rceil+1\);
```

The function $\operatorname{Sort-Lines}(X, d)$, for every $x \in X$, sorts the points of X by increasing values of their distance from x. This function runs in $O\left(n^{2} \log n\right)$ where $n=|X|$. The function MAXIMAL-ROBINSON-SUBSPACE returns a subset S of X^{\prime}, maximal for inclusion and such that (S, d) is Robinson. This can be easily implemented by a greedy algorithm. We will see in Section 4 that, after Sort-Lines, such a greedy version of MAXImAL-Robinson-Subspace runs in $O\left(\left|X^{\prime}\right|^{2}\right)$. So, as there is at most $n / 3$ iterations of the while loop, Algorithm 1 runs in $O\left(n^{3}\right)$.

4 An incremental algorithm to recognize Robinson dissimilarities

In order to implement Maximal-Robinson-Subspace, we need a function ADD-AND-TEST which takes as entry a dissimilarity space (X, d), a set $S \subset X$ such that (S, d) is Robinson, the PQ -tree $\mathcal{T}_{P}(S, d)$ and a point $x \in X \backslash S$. A PQ-tree (Booth \& Lueker 1976) is a data structure which can encode all the compatible orders of a Robinson dissimilarity. ADD-AND-TEST returns the PQ-tree $\mathcal{T}_{P}(S \cup\{x\}, d)$ (If $(S \cup\{x\}, d)$ is not Robinson, then $\mathcal{T}_{P}(S \cup\{x\}, d)=$ none). The algorithm of ADD-AND-TEST can be sketched as follows:

1. Compute the sets $B_{\delta}^{S}:=B_{\delta}(x) \cap S$.
2. Insert the sets B_{δ}^{S} into $\mathcal{I}_{\mathcal{P}}(S, d)$. We get a PQ-tree $\mathcal{I}_{\mathcal{P}}{ }^{x}(S, d)$.
3. Add the point x to $\mathcal{I}_{\mathcal{P}}{ }^{x}(S, d)$. We get the PQ-tree $\mathcal{I}_{\mathcal{P}}(S \cup\{x\}, d)$. This will be done in two steps:
(a) Consider only the points of S the closest from x.
(b) Consider the other points of S.

Acknoledgements

This work was supported in part by ANR project DISTANCIA (ANR-17-CE40-0015).

References

Booth, K.S. \& Lueker,G.S. 1976, Testing for the Consecutive Ones Property, Interval Graphs and Graph Planarity Using PQ-Tree Algorithm, Journal of Computer and System Sciences 13, 335-379.
Çela, E., Deineko, V. and Woeninger G.J. 2023, Recognising permuted Demidenko matrices, ArXiv:2302.05191v1.
DIDAY, E. 1986, Orders and overlapping clusters by pyramids in Multidimensionnal Data Analysis, J. de Leeuw, W. Heiser, J. Meulman and F. Critchley Eds., 201-234, DSWO.
Durand, C. \& Fichet, B. 1988, One-to-one correspondences in pyramidal representation: an unified approach, in Classification and Related Methods of Data Analysis, H.H. Bock Ed., 85-90, North-Holland.
Robinson, W.S. 1951, A method for chronologically ordering archeological deposits, American Antiquity 16, 293-301.

