CLUSTERING LONGITUDINAL ORDINAL DATA
Julien Jacques 1 and Francesco Amato 1

1 Univ Lyon, Univ Lyon 2, ERIC, Lyon, (e-mail: julien.jacques@univ-lyon2.fr, francesco.amato@univ-lyon2.fr)

ABSTRACT: In social sciences, studies are often based on questionnaires asking participants to express ordered responses several times over a study period. We present a model-based clustering algorithm for such longitudinal data. Assuming that an ordinal variable is the discretization of an underlying latent continuous variable, the model relies on a mixture of matrix-variate normal distributions, accounting simultaneously for within- and between-time dependence structures. An EM algorithm is considered for parameter estimation. An evaluation of the model through synthetic data show its estimation abilities and its advantages when compared to competitors. A real-world application concerning preferences for grocery shopping during the Covid-19 pandemic period in France will be presented.

KEYWORDS: Ordinal data, longitudinal data, clustering, matrix variate distribution, EM algorithm

1 The data
Let denote by $y_{i,j,t}$ the observation of the j-th ordinal variable for the i-th unit at time t ($i = 1, \ldots, N; \ j = 1, \ldots, J$ and $t = 1, \ldots, T$). The categories of the j-th ordinal variable are quoted by 1 to C_j. The data are organized in a random-matrix form such that $Y = \{Y_i\}_{i=1}^{N}$ is a sample of $J \times T$-variate matrix observations:

$$
Y_i = \begin{pmatrix}
y_{i,1,1} & \cdots & y_{i,1,t} & \cdots & y_{i,1,T} \\
\vdots & \ddots & \vdots & \cdots & \vdots \\
y_{i,j,1} & \cdots & y_{i,j,t} & \cdots & y_{i,j,T} \\
\vdots & \cdots & \vdots & \ddots & \vdots \\
y_{i,J,1} & \cdots & y_{i,J,t} & \cdots & y_{i,J,T}
\end{pmatrix}
$$

2 Latent Gaussian distribution for ordinal variable
We assume that each variable $y_{i,j,t}$ is the manifestation of an underlying latent continuous variable $z_{i,j,t}$ which follows a Gaussian distribution. At this
point, we can assume that each observed ordinal matrix Y_i is indeed the manifestation of a latent continuous random matrix $Z_i \in \mathbb{R}^{J \times T}$, which follows a matrix-normal distribution $MN_{(J \times T)}(M, \Phi, \Sigma)$, where $M \in \mathbb{R}^{J \times T}$ is the matrix of means, $\Phi \in \mathbb{R}^{T \times T}$ is a covariance matrix containing the variances and covariances between the T occasions or times and $\Sigma \in \mathbb{R}^{J \times J}$ is the covariance matrix containing the variance and covariances of the J variables. The matrix-normal probability density function (pdf) is given by

$$f(Z|M, \Phi, \Sigma) = \left(\frac{2\pi}{2}\right)^{-J/2} |\Phi|^{-1/2} |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2} \text{tr}[\Sigma^{-1}(Z - M)\Phi^{-1}(Z - M)^\top]\right\}.$$

To map from Y_i to Z_i, let γ_j denote a C_j+1-dimensional vector of thresholds that partition the real line for the j-th ordinal variable that has C_j levels and let the threshold parameters be constrained such that $-\infty = \gamma_{j,0} \leq \gamma_{j,1} \leq ... \leq \gamma_{j,C_j} = \infty$. If the latent $z_{i,j,t}$ is such that $\gamma_{j,c-1} < z_{i,j,t} < \gamma_{j,c}$ then the observed ordinal response, $y_{i,j,t} = c$.

3 Model-based clustering
When data are heterogeneous, mixture model is an efficient way to perform clustering. In the present case, we consider Mixture of Matrix-Normals (MMN, Viroli, 2011). As usually for mixture models, parameter estimation is done using an EM algorithm. The number of cluster is selected using the BIC criterion.

4 Applications
An evaluation of the model through synthetic data show its estimation abilities and its advantages when compared to competitors. A real-world application concerning preferences for grocery shopping during the Covid-19 pandemic period in France will be presented.

References