
NORMALIZED LATENT MEASURE FACTOR MODELS

Mario Beraha 1and Jim E. Griffin2

1 Department of Economics and Statistics, University of Torino,
(e-mail: mario.beraha@unito.it)
2 Department of Statistical Sciences, University College London
(e-mail: j.griffin@ucl.ac.uk)

ABSTRACT: Building on dependent normalized random measures, we consider a prior distribution for a
collection of discrete random measures where each measure is a linear combination of a set of latent mea-
sures, interpretable as characteristic traits shared by different distributions, with positive random weights.
The model is non-identified and a method for post-processing posterior samples to achieve identified infer-
ence is developed. This uses Riemannian optimization to solve a non-trivial optimization problem over a
Lie group of matrices. Our approach leads to interesting insights for populations and easily interpretable
posterior inference.
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1 Introduction

In this short paper, we review the methodology for modeling and comparing probability distri-
butions discussed in Beraha and Griffin (2022). Modeling a collection of random probability
measures is an old problem that has received considerable attention in the Bayesian nonpara-
metric literature, see, e.g. Quintana et al. (2022) for a recent review. We consider here specifi-
cally the case where data are naturally divided into groups or subpopulations, and data are par-
tially exchangeable. Let (y1, . . . ,yg) denote a sample of observations divided into g groups where
y j = (y j1, . . . ,y jn j). By de Finetti’s theorem, partial exchangeability is tantamount to assuming that
there is a vector of random probability measures (p1, . . . , pg)∼ Q such that

y j1, . . . ,y jn j | p j
iid∼ p j, j = 1, . . . ,g

p1, . . . , pg ∼ Q
(1)

and independence holds across groups. In particular, we focus here on mixture models of the kind

p j(y) =
∫

Θ

f (y | θ)p̃ j(dθ)

where the p̃ j’s are almost surely discrete random probability measures.
The construction of a flexible prior Q that can suitably model heterogeneity while borrowing

information across different groups has been thoroughly studied in Bayesian nonparametrics. See
Quintana et al. (2022) for a recent review of such constructions. Previously proposed approaches
consider constructing p̃1, . . . , p̃g in a hierarchical model fashion (Teh et al., 2006; Camerlenghi
et al., 2019; Bassetti et al., 2020; Argiento et al., 2019), considering convex combinations of shared
and group-specific random measures (Müller et al., 2004), and starting from additive processes
(Griffin et al., 2013; Lijoi et al., 2014).

Within this setting, our goal is to propose a flexible model that, in addition to combining
heterogeneous sources of data, gives an efficient way of representing the difference in distribution
across populations. In particular, we are interested in the situation when the number of groups
g is large relative to the sample size in each group n j. Then, it is likely that the dataset cannot
inform the huge number of parameters that are associated with extremely flexible models and we
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advocate for a more parsimonious model where substantial sharing of information is encouraged
across different groups of data. The setting “large g, small n j” is somewhat reminiscent of high-
dimensional data analysis, where the dimension of each observation is large relative to the sample
size. In this case, latent factor models (see, e.g., Arminger and Muthén, 1998) provide a powerful
tool. In a latent factor model, it is assumed that each observation xi ∈Rp is a linear combination of
a set of H d-dimensional latent factors weighted by observation-specific scores, plus an isotropic
error term. We follow this analogy and propose normalized latent measure factor models, a class
of prior distributions for a vector of random probability measures p̃1, . . . , p̃g. Informally, our model
amounts to considering p̃ j as a convex combination of a set of latent random probability measures.

2 The Model

As already mentioned in the Introduction, we assume

y j1, . . . ,y jn j | p̃ j
iid∼ p j :=

∫
Θ

f (· | θ)p̃ j(dθ)

and that each p̃ j is a normalized random measure, that is

p̃ j(·) =
µ̃ j(·)
µ̃(Θ)

, j = 1, . . . ,g.

Then, the model is specified by a choice of the mixture kernel f (· | ·) and a prior distribution for
(µ̃1, . . . , µ̃g). Let (µ∗1, . . . ,µ

∗
H) be a completely random vector (i.e., a vector of completely random

measures). Let λ jh, j = 1, . . . ,g, h = 1, . . . ,H be a double sequence of almost surely positive
random variables (specific choices of the distribution of the λ jh’s are discussed later). We assume

µ̃ j(·) =
H

∑
h=1

λ jh µ∗h(·). (2)

Note that (2) generalizes the construction in Griffin et al. (2013) and Lijoi et al. (2014).
A suitable model for our applications arises when µ∗1, . . . ,µ

∗
H share their support points. In

particular, we will assume that µ∗1, . . . ,µ
∗
H is a compound random measure (CoRM, Griffin and

Leisen, 2017). That is,
µ∗h(·) = ∑

k≥1
mhkJkδθ∗k

(·),

where mhk are positive random variables such that mk = (m1k, . . . ,mHk), k ≥ 1, are independent
and identically distributed from a probability measure on RH

+, and η = ∑k≥1 Jkδθ∗k
is a completely

random measure with Lévy intensity ν∗(dz)α(dx). In this case we can write

µ̃ j(·) = ∑
k≥1

(ΛM) jkJkδθ∗k
(·), (3)

where Λ is the J×H matrix with entries λ jh, M is a H×∞ matrix, so that Γ=ΛM is a g×∞ matrix
with entries γ jk, j = 1, . . . ,g, k ≥ 1. Note that, in analogy to CoRMs, our model includes shared
weights Jk for all the measures µ̃ j. We find that the additional borrowing of strength obtained
through the Jk’s is useful in practice since, in our applications, the µ̃ j’s are usually similar. Suitable
prior distributions for all the parameters will be specified in later sections.

Equations (2) and (3) share analogies with latent factor models, where the observed variable is
X ∈ Rp and its ℓ-th entry is modeled as Xℓ ≈ ∑

H
h=1 ωℓhZh, for Z = (Z1, . . . ,ZH) an H-dimensional

random variable. In particular, we could consider µ∗1, . . . ,µ
∗
H to be measure-valued factor load-

ings and the λ jh’s to be factor scores. This yields an interpretation similar to functional factor
models (Montagna et al., 2012). On the other hand, we could consider the measure-valued vec-
tor (µ̃1, . . . , µ̃g) as a single high-dimensional observation and model it as a linear combination of
measure-valued factors with loadings λ jh’s. Both interpretations make sense and lead to interesting
analogies. We use the latter and call Λ the loadings matrix and the µ∗h’s the latent measures.
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Figure 1: Spatial distribution of the scores in the Californian income dataset. Top row: San
Francisco area. Bottom row: Los Angeles ares. Columns represent overall average, high, median,
and low income prevalence, respectively.

3 Some details about posterior inference and post-processing

We perform posterior inference by proposing an ad-hoc Markov chain Monte Carlo algorithm,
which combines Gibbs updates (when the full conditionals belong to known parametric families)
with Hamiltonian Monte Carlo steps (when they do not). For computational convenience, we
truncate the support of the CoRM to K atoms, but a slice sampler could be alternatively employed.
Software is implemented using the JAX Python package.

Our model is not identifiable due to the multiplicative relationship between Λ and (µ∗1, . . . ,µ
∗
h).

This is not surprising, as the same holds for common latent factor models (Geweke and Sin-
gleton, 1980), where the likelihood is invariant to the action of orthogonal matrices. The non-
identifiability in our model is more severe than the one of common latent factor models. In fact,
for any Q s.t. Q−1 is well defined, the likelihood is invariant when considering Λ′ = ΛQ−1 and
M′ = QM. Nevertheless, the constraints that Λ′ ≥ 0 (element-wise) and M′ ≥ 0 greatly reduce the
number of matrices Q that can cause non-identifiability. In particular, we do not need to worry
about sign ambiguity.

As in Poworoznek et al. (2021), we propose to find an optimal Q via an ad-hoc post processing
that aims to maximally separate the latent measure µ∗h’s, according to some notion of distance
between measures. We formalize the post-processing into a constrained optimization problem
over the special linear group, that is the set of matrices with determinant equal to one. The special
linear group is not a linear space, but can take advantage of its differential structure, and tackle
the problem via a Riemannian augmented Lagrangian method that leverages recent advances in
Riemannian optimization (França et al., 2021).

4 Analysis of Californian Income Data

We consider the 2021 American Community Survey census data publicly available at https:
//www.census.gov/programs-surveys. Specifically, we consider the PINCP variable
that represents the personal income of the survey responders and restrict to the citizens of the
state of California. For privacy reasons, data are grouped into geographical units, denoted PUMA,
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roughly corresponding to 100,000 inhabitants. There are 265 PUMAs in California. We consider
y j,i to be the logarithm of the income of the i-th person in the j-th PUMA. The total number of
responders is 43,380, with the median number of observations per PUMA being 164.

We assume independent log-Gaussian Markov random field priors for each column of Λ, beta
priors for the J’s and gamma priors for the mhk’s and fix H = 4. Although not shown here, the
four latent measures can be interpreted as representing average incomes (i.e. the distribution is
equal to the whole population distribution), high incomes, median incomes (i.e., the distribution is
concentrated on median values) and low incomes. Figure 1 shows the values of Λ for the four latent
measures associated with the PUMAs in the San Francisco and Los Angeles areas. In particular,
we note that the second factor is highly represented in Palo Alto, home to several tech tycoons, and
San Rafael, home to entertainers. Finally, note that the fourth factor (associated with the lowest
incomes) has a high weight in some areas in Los Angeles. In particular, the PUMA around the port
and the one corresponding to the “south LA” neighborhoods going from University Park to Green
Meadows. This is in agreement with the 2008 Concentrated Poverty in Los Angeles report, which
estimates that the percentage of households in poverty is typically greater than 40% in those areas.
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