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ABSTRACT: Data-integration of multiple studies is key to understanding and gain-
ing knowledge in statistical research. However, such data present artifactual sources
of variation, also known as covariate effects. Covariate effects can be complex and
can lead to systematic biases. If not corrected, these biases may lead to unreliable
inferences. Here, we will present novel sparse latent factor regression and multi-study
factor regression models to integrate heterogeneous data.
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1 Introduction

Data integration is crucial when separate data sources are collected on the same
phenomenon. For instance, different economical studies may test the effi-
cacy of several policy-making interventions; clinical trials may analyze various
treatments using data gathered at different times. Integrative models provide
gains in statistical power and help to take accurate decisions sooner. However,
a lack of appropriate integration tools could lead to unreliable inference.

Data integration in biomedicine is particularly challenging as some mea-
surements reappear across different studies. However, high throughput exper-
iments display both biological and artifactual sources of variation. Here, we
will present novel sparse factor regression and multi-study factor regression
models to integrate such heterogeneous data.

The factor regression (FR) model (Avalos-Pacheco, 2018, Avalos-Pacheco
et al., 2022) provides a tool for data exploration via dimensionality reduction
and sparse low-rank covariance estimation while correcting for a range of co-
variate, or artifactual, effects, such as batch effects. A limitation of FR models
is the inability to isolate the study-specific latent structure.



The multi-study factor analysis (De Vito et al., 2019, De Vito et al., 2021)
is able to handle multiple high-throughput experiments, simultaneously achiev-
ing two goals: a) to capture common component(s) across studies and b) to
isolate the sources of variation that are unique of each study. We generalize
the multi-study factor analysis by adopting a factor regression approach. Our
proposed multi-study factor regression (MSFR) will enable us to jointly obtain
the group-specific covariances and the common component.

In the conference presentation, we will discuss the use of several sparse
priors, local and non-local (Johnson & Rossell, 2010), for learning the dimen-
sion of the latent factors. Our approaches provide a flexible methodology for
sparse factor regression, which is not limited to data with covariate effects. Our
models are fitted via scalable expectation–maximization (EM) algorithms.

We will also show the usefulness of our methods by presenting several ex-
amples, with a focus on bioinformatics applications. For all the examples, we
give a visual representation of the latent factors of the data. Thereafter, in the
case of cancer genomics data sets, we provide survival predictions leveraging
the obtained factors; in the case of a Hispanic community health nutritional-
data study, we obtain dietary patterns, associating each factor with a measure
of overall diet quality related to cardiometabolic disease risk.

2 Model specification

We follow the model proposed in Avalos-Pacheco et al., 2022. We consider
vectors xis = (xi1s,xi2s, . . . ,xips)

⊤ ∈ Rp, observed for i = 1, . . . ,n individuals
in study s,s = 1, . . . ,S. The factor regression model defines xis as a regression
on pv observed covariates vis ∈ Rpv , and q low-dimensional latent variables
fis ∈ Rq, also known as latent coordinates or factors xis = θvis +Φfis +eis,
where θ ∈ Rp×pv is the matrix of regression coefficients, Φ ∈ Rp×q,q ≪ p,
is the loading matrix, eis ∈ Rp is the error, distributed as eis ∼ N(0,T −1

s )
independently across i = 1, . . . ,n, with T −1

s = diag{1/τls, l = 1, . . . , p} as the
idiosyncratic precision matrix for study s. Factors are assumed to be standard
normal, fis ∼ N(0,I), independent across i = 1, . . . ,n and independent of eis.

We first set priors for the precisions τls | η,ξ ∼ Gamma(η/2,ηξ/2),, and
regression parameters θ ∼ N(0,ψI). The loadings Φ = {φ jk, j = 1, . . . , p,k =
1, . . . ,q} play a key part in factor models as they allow us to improve shrink-
age and simplify interpretation. Here, we set a non-local spike-and-slab prior
on φ jk, as in Avalos-Pacheco et al., 2022. This prior distinguishes the loading
elements that should be included, modelled by the slab component, from those
that should be excluded, modelled by the spike component. We consider a mix-



ture distribution with a product moment non-local prior (Johnson & Rossell,
2010) for the slab components and a normal prior for the spike components:

p(φ jk | γ jk) = (1− γ jk)N(φ jk;0,λ0)+ γ jk
φ2

jk

λ1
N(φ jk;0,λ0). (1)

We set a hierarchical prior over the latent indicator γ jk | ζk ∼ Bernoulli(ζk),

γ jk | ζk ∼ Beta
(aζ

k ,bζ

)
, j = 1, . . . , p,k = 1, . . . ,q.

Inference is done by an efficient EM algorithm with closed-form expres-
sions. We refer to Avalos-Pacheco et al., 2022, for details, prior elicitation,
parameter initialization, post-processing and description of the EM algorithm.

3 Pancreatic cancer

To quantify the effectiveness of our approach, we study an unpublished gene
expression data set for individuals with pancreatic cancer. We analyze two
studies collected under different experimental conditions and sizes (n1 = 27
and n2 = 183). We select the 5% genes with the highest total variance across
all samples (p = 1,177 genes). We normalize the data to have zero mean and
unit variance and included the type of tissue (normal or tumour) and a study
indicator as covariates for our model. In order to evaluate the effect of the non-
local prior, we compare our model (FR-NLSS) with methods that use a normal
spike-and-slab prior (George & McCulloch, 1993) (FR-LSS), instead of our
proposed non-local spike-and-slab prior, and that do not leverage any sparse
inducing priors (FR-NS). Since the data generating ground truth is unknown,
we assess the performance of our estimators by evaluating the cross-validated
log likelihood. Table 1 presents the results from 10 independent runs of 10-
fold cross-validation. It displays the selected number of factors q̂, the number
of estimated non-zero loadings ||Φ̂||0 and the cross-validated loglikelihood.

Table 1. Cross-validated log-likelihood analysis for pancreatic cancer dataset.

q̂ ||Φ̂||0 Log-likelihood
FR-NS 100.0 117,700 -1,644.8

FR-LSS 63.0 74,151 -1,622.0
FR-NLSS 19.0 22,363 -1,157.6

The results in Table 1 show that our proposed FR-NLSS obtained a better
out-of-sample log-likelihood with fewer factors and sparser Φ than our com-
petitors. Thus, we conclude that FR-NLSS reconstructed the data better than
the other methods.



4 Extensions

We extend the FR Model to the Multi-study factor setting (De Vito et al., 2019,
De Vito et al., 2021). We refer to this generalization as the Multi-study factor
regression (MSFR) (De Vito & Avalos-Pacheco, 2023+).

Marginally, the underlying covariance of xis of the FR Model is Σs =
ΦΦ⊤+T −1

s . In the MSFR setting, the Σs becomes

Σs = ΦΦ
⊤+ΛsΛ

⊤
s +T −1

s , (2)

where Λs ∈Rp×qs ,qs ≪ p, is the study-specific loading matrix. The new Σs al-
lows to explain the total variance into the variance of the common factors, the
variance of the study-specific factors and the idiosyncratic error. In the con-
ference presentation, we will discuss the FR and MSFR in detail, and we will
apply our models to different gene expression and nutritional epidemiology
data sets. Both our FR and MSFR will be demonstrated to be valuable to visu-
ally depict the underlying factors of the data; and to make survival predictions
or to identify dietary patterns and study the embedded risk of cardiometabolic
disease. We refer to De Vito & Avalos-Pacheco, 2023+ for further details.
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