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ABSTRACT: Dirichlet process mixtures, obtained by convolving the law of a Dirichlet
process with a suitable kernel, are popular methods for density estimation. Due to the
almost sure discreteness of the mixing measure, they automatically provide a latent
clustering which is often of great interest for applied researchers. However, despite
its relevance, little is known about the posterior properties of clustering, even with
a large sample. We contribute by considering a simple data generating mechanism
and showing the asymptotic properties of the maximum a posteriori clustering with
Gaussian kernel.

KEYWORDS: Bayesian nonparametrics; clustering; maximum a posteriori; asymp-
totic analysis.

1 Introduction

Bayesian nonparametric methodologies have witnessed a growing popularity
in the last decades, mainly due to the their flexibility: see Ghosal & Van Der
Vaart (2017) for a recent review. A popular model for density estimation is
given by Dirichlet process mixtures (Lo (1984)), which can be summarized as
follows

Yi | θi ∼ k(y | θi), θi | P i.i.d.∼ P, P ∼ DP(P0,α), (1)

where k(y | θ) is a density function with parameter θ and DP(P0,θ) is the law
of a Dirichlet process (DP, Ferguson (1973)) with baseline distribution P0 and
concentration parameter α > 0. It can be shown that the realizations of P
are almost surely discrete probability measures, so that the θi’s will present
ties with positive probability, leading to a latent clustering of the observed
datapoints Y1:n = (Y1, . . . ,Yn).

Models as in (1) are provided with good asymptotic properties in terms
of density estimation (Ghosal & Van der Vaart, 2007), when the data are gen-
erated i.i.d. from a “true” distribution P∗, but the clustering behavior a pos-
teriori is less understood. As a positive note, it has been shown that, under
suitable assumptions, the posterior on the mixing measure converges to the



“true” one in Wasserstein distance (Nguyen, 2013), but the metric is too weak
to prove per se results on the clustering. More recently, Miller & Harrison
(2013, 2014) showed that the posterior distribution on the number of clusters
is often inconsistent, in the sense that it places positive mass to a larger number
of clusters, even asymptotically. However, such results are not as bad as they
sound: indeed, Ascolani et al. (2023) suggested that the issue is alleviated by
placing a suitable hyperprior on the concentration parameter α, while Wade
(2023) empirically showed that different estimators for the partition (obtained
by minimizing different loss functions) lead to considerably different estimates
for the number of clusters. Beyond this framework, Rajkowski (2019) proved
interesting geometric properties of the maximum a posteriori partition.

In this work we consider a Gaussian kernel for model (1) and a purposely
simple data generating mechanism, so that computation of posterior quanti-
ties becomes easier. We show that in this context the maximum a posteriori
clustering converges to the “natural” partition of the observations.

2 Dirichlet process mixtures with Gaussian kernel

As discussed in Section 1, by the discreteness of the DP the set (θ1, . . . ,θn),
corresponding to observations Y1:n, yields ties with positive probability. There-
fore model (1) induces a distribution over the space of partitions of [n] =
{1, . . . ,n}. If A = {A1, . . . ,As} ∈ τs(n), where τs(n) is the space of partitions
of [n] in s non-empty and disjoint subsets, it is possible to show (Miller &
Harrison, 2013; Ascolani et al. , 2023) that
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where a j = |A j|, YA j = {Yi | i ∈ A j} and m
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notes the marginal distribution of cluster j. We call the maximum a posteriori
clustering, the partition A∗(Y1:n) which maximizes the above posterior distri-
bution, i.e. A∗(Y1:n) = argmaxAP(A | Y1:n). In this work we assume to observe
scalar data points and

k(y | θ) = N(θ,σ2) and P0(dθ) = N(µ0,σ
2
0)dθ, (3)

where N(µ,τ2) denotes the density of a normal distribution with mean µ and
variance τ2, while (µ0,σ
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putations it is easy to obtain
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3 Data generating mechanism and main result

As it is commonly done in asymptotic analysis, we assume that the observed
datapoints are not generated according to model (1), but rather are independent
and identically distributed from a “true” distribution P∗. In the following we
assume P∗(dy) = δc∗(dy), that is all the observations are equal to a fixed real
value c∗. This is a stylized setting, where we expect the partition generated by
model (1) to converge to [n], i.e. all observations clustered together. However,
Theorem 4.1 in Miller & Harrison (2013) implies that the posterior on the
number of clusters does not converge to 1 as n → ∞. Notice that Theorem 3 in
Ascolani et al. (2023) shows instead that consistency holds with a prior on the
concentration parameter α. In the following theorem we prove that, even with
α fixed, the maximum a posteriori clustering converges to [n], as expected.

Theorem 1. Consider model (1) with kernel as in (3). Let Yi
i.i.d.∼ δc∗ , with

i = 1, . . . ,n. Then, for every (µ0,σ
2
0,σ

2) there exists N such that for every
n ≥ N it holds A∗(Y1:n) = [n].

Proof. Fix a triplet (µ0,σ
2
0,σ

2). The statement is proved by showing that there
exists N such that for every n ≥ N it holds
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By (4) it is easy to show that there exists a constant K > 0, which does not
depend on s and n, such that α1−s
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τs(n). Therefore, by (2) we can give the following bound
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Notice that f (s+ 1) > f (s) if and only if s > n− eK , so that f (s) attains its
maximum either at 2 or n. Therefore we conclude
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as n → ∞, as desired.

4 Discussion

We showed that, with constant data, despite inconsistency for the number of
clusters, the maximum a posteriori clustering converges to the “true” partition.
It would be of great interest to extend this result beyond such simple data
generating mechanism, even if the identification of a “true” clustering becomes
less clear: see Section 3 of Rajkowski (2019) for some examples. This will be
object of future work.
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