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ABSTRACT: Spatial networks describe relations among agents that live in a metric
space and whose locations affect the probability of connections. Recently, nonpara-
metric Bayesian statistics (BNP) proved itself to be a powerful tool to provide random
graph models that mimic real world networks, but no proposals have been made so far
to include spatial covariates. I will show how some available models fail in recovering
spatial information and conjecture a way to solve the problem.
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1 Introduction

Relational data can be described by mathematical objects known as graphs,
collection of nodes, which represent agents of any nature, connected by edges
or links, indicating a relation between those nodes. In applications, a graph is
usually called network. Networks describe a plethora of relational phenomena,
like transportation, social interactions, email exchanges, protein interactions,
internet connections and many more. Network data have been collected ex-
tensively in the last decades and have pushed the frontier of research to offer
refined models able to fit the complexity of their information.

There are multiple characteristics of real network that researchers try to
adhere to when designing a random graph model. The degree of a node is the
number of edges departing from it, and the degree distribution of the network is
an interesting aspect to study, which in many real examples has been observed
to be close to a power-law. Additionally, real networks often display a strictly
positive clustering coefficient - defined as number of triangles over triplets -
which indicates the presence of transitivity in connections (a friend of a friend
will most likely become a friend). Also, the density of edges in many of the
gigantic networks we deal with nowadays seems to be very low, meaning that
the number of edges does not grow as fast as the number of nodes squared.

The graphon framework received a lot of attention in the last two decades
for its possibility of describing node exchangeable graphs, i.e. networks where



a reshuffling of the labels of the nodes does not affect the probability of con-
nections. Being exchangeability a convenient property underpinning many
Bayesian models, it comes as no surprise that the graphon model became
connected with many Bayesian proposals. The graphon also contains as spe-
cial cases popular models like the stochastic block model and the latent factor
model. Nevertheless, this framework is misspecified for sparse networks, be-
ing able to fit only dense or empty ones (see Orbanz & Roy, 2015 for a review).
In section 2 I will review the model originally proposed in Caron & Fox, 2017
which uses BNP to overcome the sparsity limitation of graphons and fit some
of the properties we observe in real data. This model stimulated an interest-
ing line of research under the name of graphex process. The new proposals,
though, fail to describe networks whose edges need a spatial component to be
described. In section 3 I will show how Caron & Fox, 2017 fails to represent
data that feature a strong spatial component. I will include in the comparison
the multidimensional scaling algorithm and show how this spatial algorithm
fails to describe such data as well. I will finally conjecture how we can move
forward with a spatial network model under the graphex framework.

2 A Bayesian nonparametric model for sparse graphs

The model by Caron & Fox, 2017 defines a network as a Poisson point process
on the positive real plane, Z = ∑i, j≥1 zi jδ(θi,θ j),where zi j is equal to 1 if there
is an edge between nodes i, j and 0 otherwise, and θi ∈ R+ is the label of the
node. The model is heterogeneous, since the probability of connection depends
on the node sociability weight wi ∈ R+ (as opposed to homogeneous models
with equal probability across all pairs of nodes):

P(zi j = 1|(wk,θk)k≥1) = 1− e−2wiw j . (1)

To tune the distribution of w, the authors propose (θk,wk)k to be sampled from
a Poisson process with intensity λ(dθ)ρ(dw), with λ Lebesgue measure and ρ

a Lévy measure. Equivalently, we can describe W = ∑i≥1 wiδθi as distributed
according to a homogeneous completely random measure (CRM). CRMs are a
BNP building block, being used as flexible prior distributions over functional
spaces (Lijoi & Prünster, 2010). Caron & Fox, 2017 assume ρ to be regularly
varying at 0 with exponent σ ∈ [0,1], which intuitively means that ρ behaves
similarly to a power function with exponent σ in a neighborhood of 0 (for the
formal definition, see Caron et al. , 2023). Under this assumption, they prove
that the model describes empty, dense or sparse networks (with sparsity level



tuned by σ) and that the degree distribution is a power-law with exponent 1+σ

for high degree nodes. Caron et al. , 2023 additionally prove that the clustering
coefficient of such model is asymptotically strictly positive.

3 Issues of current models with sparse spatial networks

Spatial networks are networks whose nodes live in a metric space, and their
positions affect the probability of connections. An example is the network of
airports, where nodes are airports and edges represent flight connections be-
tween them. An instance of it is available as the network of flight connections
in the United States of America in 2010∗. We focus on the continental part of
the US, excluding Alaska and Hawaii, for a total of 713 airports and 104 con-
nections. The network is sparse with power-law degree distribution. We can
easily convince ourselves that connections are determined partly by the size of
the airport (a “sociability”), and partly by its location.

We fitted eq. 1 to the dataset in order to estimate the sociability of each
airport, using a generalised gamma process as prior for the weights (the set up
is as described in Caron & Fox, 2017). Once obtained estimates, we sampled
100 networks from the posterior predictive and we compared the clustering
coefficient against its true value. Clustering is usually associated with a strong
space component, since spatial models favour connections between nodes that
are close (therefore inducing transitivity). The clustering coefficient of the real
data is 0.50, while the posterior predictive mean is 0.29 (95% credible interval
[0.25,0.34]). The BNP model provides a positive value, but still the true value
sits far away from the estimated one, suggesting that sociability is not enough
to capture the underlying dynamics of the airport data.

Another possibility to fit such data is to use a multidimensional scaling al-
gorithm, which takes a pairwise similarity matrix between nodes (in our case,
the binary adjacency matrix) and computes latent locations for the nodes which
minimise a loss function known as strain (Mead, 1992). Applying the algo-
rithm to the dataset and fixing a 2-dimensional latent space, we obtain figure
1. On the left side, longitude is plotted against the two projections, showing
that none of them is able to recover the true locations (the results for latitude
are similar). The orange dots represent the nodes with highest degree (hubs).
On the right, where nodes are shown in the 2-dimensional latent space, we can
clearly see that the positions are determined by the degree of the nodes, since
the hubs are all projected in a tight central position.

∗https://toreopsahl.com/datasets/



Figure 1. 2-dimensional MDS. On the left, longitude against the two projections, on
the right nodes in the latent space. Orange represents nodes with high degree.

The experiments suggest that a model to describe sparse spatial networks
is needed. I conjecture that this could be a modification of eq. 1 with an ad-
ditional spatial component. The model would inherit the interesting properties
of sparsity, power-law degrees and interpretability. This would be beneficial
not only for networks with a concrete notion of space, but also for those whose
connections can be described by similarity of nodes measured in an abstract
latent space (e.g. for qualitative covariates with no notion of distance).
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