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ABSTRACT: Multidimensional phenomena are usually characterized by nested latent
dimensions associated, in turn, with observed variables. These phenomena, for in-
stance, poverty, well-being, and sustainable development, can often differ across coun-
tries, or cities within countries, in terms of dimensions, other than in their relationships
to each other, on the one hand, and their importance in the definition of the general
concept, on the other hand. This paper discusses several parsimonious structures of
the covariance matrix reconstructing relationships among variables which can be im-
plemented in Gaussian mixture models to study complex phenomena in heterogeneous
populations.
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1 Introduction

Nested latent dimensions associated with observed variables usually character-
ize multidimensional phenomena. The hierarchical structure underlying them
is composed of specific and higher-order dimensions; therefore, they give rise
to a hierarchy of latent concepts, whose root is represented by the general
one. These phenomena concern several fields such as economy, sustainability,
health, but also differ in their definition across countries. To reconstruct hierar-
chical relationships among variables in heterogeneous populations, Cavicchia
et al., 2022, introduced a Gaussian mixture model with a specific hierarchi-
cal structure of the component covariance matrix. The latter corresponds to
an extended ultrametric covariance matrix, whose main property is to be one-
to-one-associated with a hierarchy of latent concepts. Differently from the
mixture of factor analyzers model (McLachlan et al., 2003), where a factorial
structure in uncorrelated factors is identified, the methodology proposed by
Cavicchia et al., 2022, is able to detect correlated latent concepts, each one
associated with a group of observed variables, and to delve deeper into their
relationships.



Notwithstanding the general formulation of an extended ultrametric co-
variance structure is useful to study hierarchies composed of their maximum
number of internal nodes, i.e., the number of the specific dimensions and their
aggregations in pairs, more parsimonious structures can be considered. In this
paper, different configurations of the extended ultrametric covariance structure
are discussed, as well as their properties and main features (Section 2). Final
considerations conclude the paper in Section 3.

2 Ultrametric Gaussian mixture models: parsimonious structures

Let xxx = (xxx1, . . . ,xxxn)
′ be a random sample of size n, where xxxi (i = 1, . . . ,n) takes

value in R p. Suppose that xxxi follows a finite mixture of G Gaussian distribu-
tions, whose pdf is given by

f (xxxi;ΨΨΨ) =
G

∑
g=1

πgφ
(
xxxi;µµµg,ΣΣΣg

)
, (1)

where π1, . . . ,πG are positive weights (mixing proportions of the mixture) such
that ∑

G
g=1 πg = 1, µµµg and ΣΣΣg, g = 1, . . . ,G, are the mean vectors and the com-

ponent covariance matrices of the multivariate Gaussian distributions φ(·|·).
In the Ultrametric Gaussian Mixture model, the covariance matrix of the gth
component of the mixture is parameterized as

ΣΣΣg =

VVV g


Vgσ11 0 ... 0

0 Vgσ22 ... 0
... ... ... ...
0 0 ... VgσQQ

VVV ′
g

⊙ IIIp

+

VVV g


Wgσ11 0 ... 0

0 Wgσ22 ... 0
... ... ... ...
0 0 ... WgσQQ

VVV ′
g

⊙ (111p111′p − IIIp)

+

VVV g


0 Bgσ12 ... Bgσ1Q

Bgσ12 0 ... Bgσ2Q
... ... ... ...

Bgσ1Q Bgσ2Q ... BgσQQ

VVV ′
g

 . (2)

Each addend of Eq. (2) depends on the matrix VVV g, which represents the
membership matrix determining the partition of the variable space into Q < p
groups, and on one of the three parameters characterizing the variable groups.



The first addend corresponds to the diagonal elements of ΣΣΣg, where Vgσ11,
. . . ,VgσQQ are the variances of the Q groups in VVV g; whereas, the off-diagonal
elements of ΣΣΣg are defined by Wgσqq and Bgσqh, q,h = 1, . . . ,Q,h ̸= q, in the
second and third addend of Eq. (2), respectively. The latter represent the co-
variances within and between the Q groups. Specific constraints on these pa-
rameters let the extend ultrametric covariance matrix in Eq. (2) be one-to-one
associated with a hierarchy. Specifically, an ordering exists among Vgσqq,Wgσqq
and Bgσqh so that the group variance is greater than the covariance within the
group, which in turn is not lower than the maximum covariance between the
groups.

Even if suitable in different situations to represent the hierarchical rela-
tionships among variables, the parameterization in Eq. (2) can be further con-
strained to obtain more parsimonious structures. By setting the membership
matrix VVV g to be the same across mixture components, the other three sets of
parameters can be fixed or left free to vary across them. Therefore, the lat-
ter structures pinpoint specific dimensions that are equal across the subpopu-
lations of the mixture while their aggregations, thus higher-order dimensions,
can differ across them. We can delve into an example of these hierarchical con-
figurations by considering well-being. OECD identifies eleven key dimensions
for measuring it throughout the countries*. Nonetheless, despite sharing the
same specific dimensions, the characterization of this complex phenomenon
can vary across countries. For instance, the education level is more associated
with the possibility of having a better job in less developed economies and
more related to a higher civic engagement in more developed economies.

In both cases in which the specific dimensions are equal or not across com-
ponents, they can be aggregated altogether at the same level, i.e., a unique
value occurs in the matrix of the covariances between groups. This structure
gives rise to a second-order hierarchy, studied by Cavicchia & Vichi, 2022, in
the factor analysis framework. An interesting case that arises from this con-
figuration corresponds to a formative model (Bollen, 2001), where the unique
value Bσ – depending or not on g – equals zero. Indeed, in this hierarchical
structure, the specific dimensions result to be uncorrelated and, thus, formed
the general concept as unique and not interchangeable part of it. Several exam-
ples of formative concepts exist in the literature, such as human development,
which is measured by three specific dimensions, i.e., long and healthy life,
education, and decent standards of living, usually uncorrelated to each other.

*https://www.oecd.org/wise/measuring-well-being-and-progress.htm

https://www.oecd.org/wise/measuring-well-being-and-progress.htm


3 Conclusions

When studying multidimensional phenomena, the hierarchical structures of la-
tent dimensions underlying them have to be analyzed to build an index for
their measurement. To this aim, Cavicchia et al., 2022 proposed an ultrametric
Gaussian mixture model which is able to delve into hierarchical relationships
among latent dimensions, on the one hand, and to study different character-
ization of concepts in heterogeneous populations, on the other hand. In this
paper, several parsimonious structures of the component covariance matrices
are discussed together with the analysis of their corresponding hierarchies.
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