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ABSTRACT: This paper presents a model for clustering three-way asymmetric proximity data 

which represent flows or exchanges between objects observed at different occasions. In order 

to account for systematic differences between occasions, the asymmetric data are assumed to 

subsume two clustering structures common to all occasions: the first defines a standard 

partitioning of all objects which fits the average amount of the exchanges; the second one, 

which fits the imbalances, defines an “incomplete” partitioning of the objects, where some of 

them are allowed to remain unassigned. The model is fitted in a least-squares framework and 

an efficient Alternating Least Squares algorithm is given. 
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1 Introduction 

In many real-world applications, information is measured or observed in the form of 

several pairwise asymmetric proximity (similarity or dissimilarity) matrices related to 

the same N objects observed at H occasions (i.e., times, subjects, scenarios). Such 

kind of data represent three-way two-mode asymmetric proximity data which, without 

loss of generality, can derive from mobility flows, brand-switching, import/export 

exchanges or other type of transactions or trade. For example, international student 

mobility between countries over several years gives rise to a three-way asymmetric 

proximity array where in each year-matrix the rows correspond to the origins and the 

columns to the destinations of the mobile students. 

In the analysis of asymmetric data, the asymmetry has often been ignored by 

symmetrizing the proximities (i.e., averaging the two different values for any pair of 

objects). Nonetheless, if one hypothesizes that the asymmetries are meaningful and 

systematic across occasions, special models are needed (see Saito & Yadohisa, 2005, 

Bove et al., 2021, for extended reviews). 

Clustering three-way asymmetric proximity data is a complex task since each 

proximity data matrix generally subsumes a (more or less) different clustering of 

objects due to the heterogeneity of the occasions and the asymmetry may incorporate 

some important information about clustering. Chaturvedi and Carroll (1994) 

generalized the INDCLUS model to asymmetric proximities by identifying two 



  

different sets of (overlapping) clusters of the N objects (for rows and columns, 

respectively) common to all occasions, while the three-way heterogeneity is 

accounted for by occasion-specific weights for the clusters. 

In order to extract as much information as possible from the three-way 

asymmetries taking into account the heterogeneity of the occasions, we present here 

a generalization to asymmetric three-way data of the model proposed by Vicari (2020) 

for clustering an asymmetric dissimilarity matrix. To account for the asymmetric 

structure of the data, the model relies on the decomposition of the asymmetric 

matrices into the sum of their symmetric and skew-symmetric components which are 

jointly modelled. The asymmetric dissimilarities are assumed to subsume two 

clustering structures common to all occasions: the first defines a standard partitioning 

of all objects which fits the symmetric component of the exchanges; the second one, 

which fits the imbalances, defines an incomplete partitioning of the objects, where 

some of them are allowed to remain unassigned. Objects within the same clusters in 

both clustering structures share the same behaviours in terms of exchanges directed 

to the other clusters and identify “origin” and “destination” clusters. Note that the 

partition to fit the imbalances is allowed to be incomplete to better identify the 

directions of the exchanges, so those objects not assigned to any cluster (incomplete 

partitioning) qualify objects with “small” asymmetries. Moreover, to account for the 

heterogeneity of the occasions, occasion-specific sets of weights are estimated which 

account for both the average amounts and the directions of the exchanges. 

In Section 2, the model is formalized in a least-squares framework and an 

appropriate Alternating Least Squares algorithm is given. 

2 The model 

Let 𝐗 be a three-way two-mode asymmetric array of size (𝑁 × 𝑁 × 𝐻), where the 

𝐻 frontal slices consist of square asymmetric matrices 𝐗ℎ (ℎ = 1, … , 𝐻) of pairwise 

dissimilarities between 𝑁 objects observed in 𝐻 occasions and where the generic 

element 𝑥𝑖𝑗ℎ  is generally different from 𝑥𝑗𝑖ℎ. 

The model proposed here aims at clustering the 𝑁 objects by decomposing the 

observed asymmetries into symmetric and skew-symmetric effects, modelled as 

functions of two nested partitions of the objects which subsume clustering structures 

common to all occasions. Specifically, all occasions are supposed to share the same 

partition of the N objects into 𝐽 disjoint clusters {𝐶1, … , 𝐶𝐽} uniquely identified by an 

(N×J) binary membership matrix 𝐔 = [𝑢𝑖𝑗] (𝑢𝑖𝑗 = {0,1} for 𝑖 = 1, … , 𝑁 and 𝑗 =

1, … , 𝐽 and ∑ 𝑢𝑖𝑗
𝐽
𝑗=1 = 1 for 𝑖 = 1, … , 𝑁), where 𝑢𝑖𝑗 = 1 if object 𝑖 belongs to cluster 

𝐶𝑗 and 𝑢𝑖𝑗 = 0 otherwise. Since any object is required to be assigned to some cluster 

𝐶𝑗, such a partition is referred to as complete partition. Furthermore, a second partition 

of the N objects into J clusters {𝐺1, … , 𝐺𝐽} common to all occasions is identified by an 

(N×J) binary membership matrix 𝐕 = [𝑣𝑖𝑗] (𝑣 = {0,1} for 𝑖 = 1, … , 𝑁 and 𝑗 =

1, … , 𝐽), where any object 𝑖 is allowed either not to be assigned to any cluster or to 



  

belong to cluster 𝐺𝑗 if it belongs to cluster 𝐶𝑗 in the complete partition, i.e. 𝑣𝑖𝑗 ≤ 𝑢𝑖𝑗  

(𝑖 = 1, … , 𝑁 and 𝑗 = 1, … , 𝐽). The partition identified by V is referred to as an 

incomplete partition because a number 𝑁0 (𝑁0 ≤ 𝑁) out of N objects are allowed to 

remain unassigned to any cluster. Moreover, the complete and the incomplete 

partitions are common to all occasions and linked each other, the latter being 

constrained to be nested into the former one (𝐺𝑗 ⊆ 𝐶𝑗 for 𝑗 = 1, … , 𝐽). 

Hereafter, 𝐈𝑁 denotes the identity matrix of size N, 𝟏𝐴𝐵 and 𝟏𝐴 denote the matrix 

of size (A×B) of all ones and the column vector with A ones, respectively. 

Let us recall that any square matrix 𝐗ℎ (ℎ = 1, … , 𝐻) can be uniquely decomposed 

into a sum of a symmetric matrix 𝐒ℎ and a skew-symmetric matrix 𝐊ℎ, which are 

orthogonal to each other (i.e., trace(𝐒ℎ𝐊ℎ) = 0), as 

𝐗ℎ = 𝐒ℎ + 𝐊ℎ =
1

2
(𝐗ℎ + 𝐗ℎ

′ ) +
1

2
(𝐗ℎ − 𝐗ℎ

′ ) ,  (ℎ = 1, … , 𝐻).  (1) 

Both components in 𝐗ℎ can be modeled by defining two clustering structures 

depending on matrices U and V, respectively, as introduced in Vicari (2020) for a 

two-way asymmetric dissimilarity matrix.  

Specifically, the symmetric component 𝐒ℎ and the skew-symmetric component 

𝐊ℎ for occasion h are modeled by the two clustering structures introduced in Vicari 

(2014, 2018) and depend on the common complete membership matrix U and the 

common incomplete membership matrix V, respectively, as 

𝐒ℎ = 𝐔𝐂ℎ(𝟏𝑁𝐽 − 𝐔)
′

+ (𝟏𝑁𝐽 − 𝐔)𝐂ℎ𝐔′ + 𝐄ℎ𝑆 , (ℎ = 1, … , 𝐻),  (2) 

𝐊ℎ = 𝐕𝐃ℎ(𝟏𝑁𝐽 − 𝐕)
′

− (𝟏𝑁𝐽 − 𝐕)𝐃ℎ𝐕′ + 𝐄ℎ𝐾  , (ℎ = 1, … , 𝐻),  (3) 

where 𝐂ℎ and 𝐃ℎ are (J×J) occasion-specific diagonal weight matrices associated with 

the clusters of the complete and incomplete partition, respectively, and the error terms 

𝐄ℎ𝑆 and 𝐄ℎ𝐾  represent the parts of 𝐒ℎ and 𝐊ℎ not accounted for by the model, 

respectively. For identifiability reasons, any matrix 𝐕𝐃ℎ is constrained to sum to zero: 

𝟏𝑁
′ (𝐕𝐃ℎ)𝟏𝐽 = 0 (ℎ = 1, … , 𝐻). 

Models (2) and (3) can be combined in (1) to specify the model accounting for the 

asymmetric dissimilarities between clusters 

𝐗ℎ = [𝐔𝐂ℎ(𝟏𝑁𝐽 − 𝐔)
′

+ (𝟏𝑁𝐽 − 𝐔)𝐂ℎ𝐔′] + [𝐕𝐃ℎ(𝟏𝑁𝐽 − 𝐕)
′

− (𝟏𝑁𝐽 − 𝐕)𝐃ℎ𝐕′] 

 +𝑏ℎ(𝟏𝑁𝑁 − 𝐈𝑁) + 𝐄ℎ , (ℎ = 1, … , 𝐻), (4) 

where 𝑏ℎ is the additive constant term and the general error term 𝐄ℎ represents the 

part of 𝐗ℎ not accounted for by the model. 

It is worth noting that all occasions are assumed here to share the same clustering 

structure but with different patterns of weights which account for the heterogeneity of 

the occasions. In fact, the occasion-specific diagonal entries of 𝐂ℎ and 𝐃ℎ provide 

quantifications of the exchanges between clusters in terms of amounts and directions 

and allow to measure at what extent the exchanges vary across occasions. 



  

In model (4), the complete and the incomplete membership matrices U and V, the 

weight matrices Ch and Dh (ℎ = 1, … , 𝐻) and the constants bh (ℎ = 1, … , 𝐻) can be 

estimated by solving the following least-squares fitting problem: 

min 𝐹(𝐔, 𝐕, 𝐂ℎ , 𝐃ℎ, 𝑏ℎ) = ∑ ‖𝐗ℎ − [𝐔𝐂ℎ(𝟏𝑁𝐽 − 𝐔)
′

+ (𝟏𝑁𝐽 − 𝐔)𝐂ℎ𝐔′] −𝐻
ℎ=1

[𝐕𝐃ℎ(𝟏𝑁𝐽 − 𝐕)
′

− (𝟏𝑁𝐽 − 𝐕)𝐃ℎ𝐕′] − 𝑏ℎ(𝟏𝑁𝑁 − 𝐈𝑁)‖
2

 (5) 

subject to 

𝑢𝑖𝑗 = {0,1}   (𝑖 = 1, … , 𝑁; 𝑗 = 1, … , 𝐽)  and  ∑ 𝑝𝑖𝑗
𝐽
𝑗=1 = 1  (𝑖 = 1, … , 𝑁), (5a) 

𝑣𝑖𝑗 = {0,1}   (𝑖 = 1, … , 𝑁; 𝑗 = 1, … , 𝐽)  and  𝑣𝑖𝑗 ≤ 𝑢𝑖𝑗   (𝑖 = 1, … , 𝑁), (5b) 

𝟏𝑁
′ (𝐕𝐃ℎ)𝟏𝐽 = 0   (ℎ = 1, … , 𝐻). (5c) 

Problem (5) can be solved by using an Alternating Least-Squares algorithm which 

alternates the estimation of a set of parameters when all the others are kept fixed. The 

algorithm proposed here estimates in turn: a) the complete and incomplete 

membership matrices U and V by sequentially solving joint assignment problems for 

the different rows of U and V: given any row i, setting 𝑢𝑖𝑗 = 1 implies that either 

𝑣𝑖𝑗 = 0 or 𝑣𝑖𝑗 = 𝑢𝑖𝑗 for 𝑗 = 1, … , 𝐽; b) the occasion-specific weight matrices Ch and 

Dh (ℎ = 1, … , 𝐻) by solving regression problems; c) the additive constant bh (ℎ =
1, … , 𝐻) by successive residualizations of the three-way data matrix. The main steps 

are alternated and iterated until convergence and the best solution over different 

random starts is retained to prevent from local minima. 

Results from applications to real data will be presented to show the performance 

of the algorithm and the capability of the model to identify common clusters of objects 

which best account for their pairwise dissimilarities. 
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