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ABSTRACT: A finite mixture model for the unsupervised classification of three-way
ordinal data is proposed. Technically, it is a finite mixture of Gaussians observed
only through a discretization of its variates. Group specific means and covariances are
reparameterized according to parsimonious models. Estimation is carried out through
a composite approach to reduce the computational burden.
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1 Introduction

In a cluster analysis context, finite mixtures of Gaussians are frequently used
to classify a sample of observations (see for example Hennig et al., 2015),
even with complex data structure. This may happens when there are different
types of variables or different occasions, i.e. same observations and variables
measured at different time points or under different experimental settings. The
Gaussian mixture model has been generalized to mixtures of matrix Normal
distributions under a frequentist (Viroli, 2011a) and a Bayesian (Viroli, 2011b)
framework. The main disadvantage of this model is given by the large number
of parameters involved. In the literature, there is a broad consensus in identi-
fying as a possible solution an approach based on performing clustering and
dimensionality reduction simultaneously. Indeed, several authors have already
proposed such methods (see for example: Rocci & Vichi, 2005, Vichi et al.,
2007, Tortora et al., 2016) but only using an optimization approach. In this
paper, we focus on three-way ordinal data following a model based approach.
We assume that the ordinal variables are variates of a mixture only partially
observed through a discretization (Ranalli & Rocci, 2016). This allows us
to capture the cluster structure underlying the data, since each component of
the mixture corresponds to an underlying group. To reduce the dimension-
ality, group-specific mean vectors and group-specific covariance matrices are



reparametrized according to parsimonious models that are able to highlight
the discrimination power of both variables and occasions while taking into ac-
count the three-way structure of the data. The presence of ordinal variables
makes the maximum likelihood estimation unfeasible (see for details Ranalli
& Rocci, 2016). To overcome the computational issues due to the presence of
high dimensional integrals, a composite likelihood (Lindsay, 1988) approach
is proposed. The computation of parameter estimates is carried out through an
EM-like algorithm.

2 The model

Let x = [x11,x21, . . . ,xP1, . . . ,x1R,x2R, . . . ,xPR]
′ be a random vector of P ordi-

nal variables observed at R different occasions. For each ordinal variable we
observe cp = 1, . . . ,Cp categories with p = 1, . . . ,P in each occasion. Fol-
lowing the underlying response variable approach, the observed ordinal vari-
ables x are considered as a discretization of some continuous latent variables
y = [y11,y21, . . . ,yP1, . . . ,y1R,y2R, . . . ,yPR]

′. The relationship between x and y
is

γ
(p)
cp−1 ≤ ypr < γ

(p)
cp ⇔ xpr = cp,

where−∞ = γ
(p)
0 < γ

(p)
1 < .. . < γ

(p)
Cp−1 < γ

(p)
Cp

=+∞ are non observable thresh-
olds defining the Cp categories and constant over the occasions. We assume
that y follows a heteroscedastic Gaussian mixture model, which is only par-
tially observed,

f (y) =
G

∑
g=1

pgφ(y; µµµg,ΣΣΣg), (1)

where φ is the multivariate normal density with mean µµµg and covariance ma-
trix ΣΣΣg, while pg is the group-specific weight, with pg > 0 ∀g = 1, . . . ,G and
∑

G
g=1 pg = 1. To reduce the number of parameters, the group-specific covari-

ance matrix is modelled as follows (Browne, 1984)

ΣΣΣg = ΣΣΣO,g⊗ΣΣΣV,g, (2)

where ⊗ is the Kronecker product of matrices; while ΣΣΣO,g and ΣΣΣV,g represent
the group-specific covariance matrices of occasions and variables, respectively.
The dimensionality reduction is performed on the group-specific mean vectors
following a Tucker2 model (Tucker, 1966). The G× (PR) matrix collecting
the group-specific means is given by

M = (C⊗B)N, (3)



where N collects the scores of the G groups on the Q latent variables under
S latent occasions, B is the loadings matrix that connects the P variables with
Q latent variables, C is the loadings matrix that connects R occasions with
the S latent occasions. This trilinear model allows us to project the within-
group means, lying into a PR dimensional space, onto a reduced subspace of
dimension QS. The number of parameters can be further reduced by observing
that B can be decomposed as follows,

B =

[
BU
BL

]
=

[
I

BLB−1
U

]
BU = B̃BU

where BU is assumed to be invertible. The same can be done with C, leading
to a more parimonious model for the group-specific mean, that is

M = (C⊗B)N =
[
(C̃CU)⊗ (B̃BU)

]
N

= (C̃⊗ B̃)(CU ⊗BU)N
= (C̃⊗ B̃)Ñ.

For a i.i.d. random sample of size N, the log-likelihood is given by

`(θθθ) =
L

∑
l=1

nl log

[
G

∑
g=1

pgπ(xl; µµµg,ΣΣΣg,γγγ)

]

where xl =(c(1)11 , . . . ,c
(P)
P1 , . . . ,c

(1)
1R , . . . ,c

(P)
PR ) is a particular response pattern with

the frequence nl (∑L
l=1 nn = N) and

π(xl; µµµg,ΣΣΣg,γγγ) =
∫

γ
(1)
c1

γ
(1)
c1−1

· · ·
∫

γ
(P)
cPR

γ
(P)
c(PR)−1

φ(y; µµµg,Σg)dy

is its probability in the g-th component of the mixture. This likelihood causes
non trivial computational problems due to the presence of multidimensional
integrals. To overcome computational issues, we adopt a composite likelihood,
based on low-dimensional margins.
Further details will be given in the extended version of the paper along with
simulation and real data results to show the effectiveness of the proposal.
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