
CLUSTERING THREE-WAY DATA WITH OUTLIERS

Katharine M. Clark 1and Paul D. McNicholas1

1 Department of Mathematics and Statistics, McMaster University, Hamilton, ON,
Canada (e-mail: clarkkm2@mcmaster.ca, paul@math.mcmaster.ca)

ABSTRACT: An approach for clustering three-way data is discussed. The approach,
which is based on mixtures of matrix-variate distributions, uses an iterative subset
log-likelihood approach to detect and trim outliers.
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1 Introduction

Grubbs (1969) describes an outlier as an observation “that appears to deviate
markedly from other members of the sample in which it occurs.” Outliers,
and their treatment, is a long-studied topic in the field of applied statistics.
The problem of handling outliers in multivariate clustering has been studied
in several contexts including work by Garcı́a-Escudero et al. (2008), Punzo
& McNicholas (2016), Punzo et al. (2020), and Clark & McNicholas (2023).
The approach of Clark & McNicholas (2023) is extended to the matrix-variate
paradigm, i.e., to account for three-way data such as multivariate longitudinal
data. The OCLUST algorithm introduced in Clark & McNicholas (2023), and
supported by the R package oclust (Clark & McNicholas, 2022), is based on
the mixture model-based clustering framework (see, e.g., McNicholas, 2016)
and uses an iterative subset log-likelihood approach to detect and trim outliers.
An analogue of the OCLUST algorithm is developed for three-way data.

2 Background

The density of a finite mixture model is f (x | ϑϑϑ) = ∑
G
g=1 πg fg(x | θθθg), where

ϑϑϑ= {π1, . . . ,πG,θθθ1, . . .θθθG}, πg > 0 is the gth mixing proportion with ∑
G
g=1 πg =

1, and fg(x | θθθg) is the gth component density with parameters θθθg. Most (mix-
ture) model-based clustering methods assume, either explicitly or implicitly,
that the data are free of outliers. Outlier algorithms in (multivariate) model-
based clustering usually fall into either one of two paradigms: outlier-inclusion
and outlier trimming. Focusing on the latter, Cuesta-Albertos et al. (1997)



developed an impartial trimming approach for k-means clustering; however,
this method maintains the drawbacks of k-means clustering, where the clusters
are spherical with equal — or, in practice, similar — radii. Garcı́a-Escudero
et al. (2008) improved upon trimmed k-means with the TCLUST algorithm.
TCLUST places a restriction on the eigenvalue ratio of the covariance matrix,
as well as implementing a weight on the clusters, allowing for clusters of var-
ious elliptical shapes and sizes. An obvious challenge with these methods is
that the eigenvalue ratio must also be known a priori. There exists an estima-
tion scheme for the proportion of outliers but it is heavily influenced by the
choices for number of clusters and eigenvalue ratio.

The OCLUST algorithm (Clark & McNicholas, 2023) uses the fact that
the Mahalanobis distance is χ2

p for p-dimensional multivariate normal data
(Mardia et al., 1979) to derive the distribution of subset log-likelihoods for
clustering multivariate normal data. A subset log-likelihood is considered to
be the log-likelihood of a model fitted with n−1 of the data points. There are
n such subsets. The OCLUST algorithm uses the subset log-likelihoods and
their distribution to identify and trim outliers.

Two-way data can be regarded as the observation of n vectors, whereas
three-way data can be considered the observation of n matrices. Mixtures of
matrix-variate distributions have been used to cluster three-way data (e.g., Vi-
roli, 2011; Anderlucci & Viroli, 2015; Gallaugher & McNicholas, 2018). An
r× c random matrix X comes from a matrix-variate normal distribution if its
density is of the form

φr×c(XXX | MMM,VVV ,UUU)=
1

(2π)
rc
2 |VVV | r

2 |UUU | c
2

exp
{
−1

2
tr
(
VVV−1(XXX −MMM)⊤UUU−1(XXX −MMM)

)}
,

(1)
where MMM is the r×c mean matrix, UUU is the r× r row covariance matrix, and VVV
is the c×c column covariance matrix. Note that there is an identifiability issue
with regard to the parameters UUU and VVV , i.e., if k is a strictly positive constant,
then replacing UUU and VVV by (1/k)UUU and kVVV , respectively, leaves (1) unchanged.
Various different solutions have been proposed to resolve this issue, including
setting tr(UUU) = r or UUU11 = 1.

For multivariate normal data, the Mahalanobis distance can be expressed
as D(xi,µµµ,ΣΣΣ) = (xi −µµµ)⊤ ΣΣΣ

−1 (xi −µµµ). Pocuca et al. (2023) derive a similar
expression for matrix-variate normal data:

DM(XXX i,MMM,VVV ,UUU) = tr
{

UUU−1(XXX i −MMM)VVV−1(XXX i −MMM)⊤
}
, (2)



and prove that if a Kronecker product structure exists for ΣΣΣ, then

DM(XXX i,M̂MM,ÛUU ,V̂VV )
P−→ DM(XXX i,MMM,UUU ,VVV ), (3)

where P−→ denotes convergence in probability.

3 Methodology

As in the multivariate case, consider a subset log-likelihood in the matrix-
variate case to be the log-likelihood of a model fitted with n− 1 of the data
points. Formally, if we denote our complete dataset as X = {XXX1, . . . ,XXXn}, then
the jth subset is defined as the complete dataset with the jth point removed,
i.e., X \XXX j = {XXX , . . . ,XXX j−1,XXX j+1, . . . ,XXXn}. Analogous to the multivariate case,
treat point XXXk, whose absence produced the largest subset log-likelihood, as
our candidate outlier, ie.

Definition 1 (Candidate Outlier). We define our candidate outlier as XXXk, where

k = arg max
j∈[1,n]

ℓX \XXX j ,

and ℓX \XXX j is the log-likelihood of the subset model with the jth point removed.

Remove candidate outliers one-by-one until we obtain our best model,
which is determined by the distribution of our subset log-likelihoods, stated
in Proposition 1.

Proposition 1. For a point XXX j belonging to the hth cluster, if QX is a simpli-
fied log-likelihood and Yj = QX \XXX j −QX , then Yj has an approximate shifted
gamma density

Yj ∼ fgamma

(
y j − k

∣∣∣∣ α =
p
2
,1
)
, (4)

for y j − k ≥ 0,α > 0, where

k =− logπh +
rc
2

log(2π)+
c
2

log|UUUh|+
r
2

log|VVV h|,

nh is the number of points in cluster h, and πh = nh/n.

The mathematical results for this proposition will be given in the full paper,
along with other technical details as well as illustrations via real and simulated
data.
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