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ABSTRACT: We propose techniques for estimating a regression function when the
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1 Introduction

We propose a nonparametric regression estimator that is consistent in the pres-
ence of measurement error when predictor data are circular. Following the
approach of Carroll & Hall, 1988 and Carroll et al., 1995, we introduce a
deconvolution-type estimator.

Some facts on the characteristic functions are worth to be recalled. The
characteristic function of a circular random variable Θ, denoted as ϕΘ(`) =
α`+ iβ` satisfies ϕΘ(`) = ϕΘ+2π(`), ` ∈ Z, being zero elsewhere. Moreover,
α` = E[cos(`Θ)] and β` = E[sin(`Θ)], both are the coefficients in the Fourier
series representation of fΘ, and correspond to the `th trigonometric moment of
Θ. Finally, β` = 0 when fΘ is symmetric. If fΘ is square integrable on [0,2π),
one can represent fΘ(θ), θ ∈ [0,2π), as

1
2π

∞

∑
`=−∞

ϕΘ(`)exp(−i`θ) =
1

2π

{
1+2

∞

∑
`=1

(α` cos(`θ)+β` sin(`θ))

}
. (1)

Our estimator is described in Section 2. In Section 3, we model the carbon
monoxide propagation due to wind direction in a region near Huston (Texas).

2 Model and estimator

We consider the case of a circular predictor and linear response. Given the ran-
dom sample (Ψ1,Y1), . . . ,(Ψn,Yn), assume the regression model Yi = m(Ψi)+



σ(Ψi)ei, but it is available the sample (Φ1,Y1), . . . ,(Φn,Yn), modelled accord-
ing Φ = (Ψ+ ε)mod(2π). Here we have that

• the eis are i.i.d. real-random variables with zero mean and unit variance,
and σ2(·) is the conditional variance of Y ;

• the Ψis are independent copies of the circular latent variable Ψ with den-
sity function fΨ;

• the εis are i.i.d. circular random variables independent of the (Ψi,ei)’s,
with a known density function fε which is symmetric around zero.

We assume that fε, fΨ and fΦ are square integrable, and fε is a circular density
allowing an absolutely convergent Fourier series representation.

A local estimator for m at ψ∈ [0,2π), denoted by m̃(ψ;κ), can be obtained
by employing a circular deconvolution kernel. Using the inversion formula
(1), and considering that for a symmetric function β` = 0 for any `, we have

K̃κ(φ) =
1

2π

{
1+2

∞

∑
`=1

γ`(κ)

λ`(κε)
cos(`φ)

}
, (2)

with smoothing parameter κ > 0, where γ`(κ) and λ`(κε), for ` ∈ Z, respec-
tively are the `th Fourier coefficient of the periodic weight function Kκ and the
error density fε whose concentration is κε. The estimator is well defined when
the error density has nonvanishing Fourier coefficients, γ`(κ) is not identically
zero and ∑

∞
`=1 | γ`(κ)/λ`(κε) |< ∞ for all (κ,κε) ∈ R2

+, which, in turn, imply
that both Kκ and K̃κ are square integrable functions.

The local constant estimator for m is defined by

m̃(ψ;κ) =
∑

n
i=1 K̃κ(Φi−ψ)Yi

∑
n
i=1 K̃κ(Φi−ψ)

, (3)

where K̃κ is a circular deconvolution kernel.

Theorem 1. Given the [0,2π)×R-valued random sample (Ψ1,Y1), . . . ,(Ψn,Yn),
consider the local constant estimator. If

i) Kκ is a second sin-order kernel admitting a convergent Fourier series
representation 1/(2π){1+2∑

∞
`=1 γ`(κ)cos(`θ)}, with κ increasing with

n in such a way that, for ` ∈ Z+,
limn→∞

1−γ`(κ)
1−γ2(κ)

= `2

4 ,

limn→∞ γ`(κ) = 1 and limn→∞
1
n ∑

∞
`=1 γ2

`(κ) = 0,



ii) the second derivative of the regression function m is continuous,
iii) the conditional variance σ2 is continuous, and the density fΨ is continu-

ously differentiable,

then

E[m̂(ψ;κ)]−m(ψ) =
(1− γ2(κ))

4

{
m′′(ψ)+

2m′(ψ) f ′
Ψ
(ψ)

fΨ(ψ)

}
+o(1− γ2(κ)),

Var[m̂(ψ;κ)] =

(
1+2∑

∞
`=1 γ2

`(κ)
)

2πn fΨ(ψ)
σ

2(ψ)+o
(

∑
∞
`=1 γ2

`(κ)

n

)
.

We notice that, as in the Euclidean setting, the measurement error has no
effect on the asymptotic bias of the estimator, which, when the predictor ob-
served with error is circular (linear respectively), depends only on the sec-
ond moment of the classical kernel Kκ (Kh resp.). The asymptotic variance,
similarly to the Euclidean setting, depends on the Fourier coefficients (char-
acteristic function resp.) of the error density appearing in roughness of the
deconvolution kernel K̃κ (K̃h resp.).

3 Pollution and surface wind data

Usually, air pollution in a region strongly depends on wind direction. We con-
sider data from the Texas Commission on Environmental Quality, where the re-
sponse variable is the amount of carbon monoxide (CO) while the explanatory
variable is the wind direction. We have selected a site near Houston (“North
Loop”) in Harris County at Latitude: 29.81o North and Longitude: −95.39o

West using data from 2018*. The data are collected hourly, but we have calcu-
lated the average daily wind direction (using the directional average), and the
average daily CO (in parts per million). These daily averages were “thinned”
to reduce serial correlation resulting in 183 observations from alternate days.
We initially fit a parametric model in which CO (y) is related to wind direction
(φ) using a sine-cosine model Yi = β0 + β1 sinΦi + β2 cosΦi + ei. This gives
fitted values β̂0 = 0.568, β̂1 = −0.173, β̂2 = 0.074. The CO pollution is high-
est when the wind is coming from the south (2.73 radians). Then, we fit a
standard circular-linear nonparametric regression, in which the measurements
are treated as error free. The smoothing parameter (chosen by leave-one-out

*https://www.tceq.texas.gov/



cross-validation) was selected as κ = 7.77 for a von Mises kernel. For this
model, the maximum CO occurs at 2.11 radians.

Finally, in this circular-linear case, we use a error-in-variables model for
the observed wind direction which can be approximated by a wrapped Normal
error with zero mean and concentration equal to 0.9. The estimated CO is
then given using equation (3), in which κ was found by leave-one-out cross-
validation to be 3.35. The three curves, depicted in Figure 1, show that, in
the last case, the curve appears to be somewhat less smooth than the error-
free model estimate. The nonparametric errors-in-variables model has residual
sum of squares equal to 1.91, whereas the parametric model is slightly larger
(2.40) and the error-free model very similar (1.99). The maximum estimated
CO occurs at φ = 2.17 for the errors-in-variables model.
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Figure 1. Carbon monoxide vs wind direction at Houston North Loop monitoring sta-
tion — alternate daily averages for 2018. Parametric sin/cos model (red), fitted non-
parametric errors in variables model (black) and standard circular-linear (no error
model) kernel regression (dashed).
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