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ABSTRACT: Motivated by classification issues in marine studies, we propose a hid-
den semi-Markov model to segment toroidal time series according to a finite number
of latent regimes. The time spent in a given regime and the chances of a regime-
switching event are separately modeled by a battery of regression models that depend
on time-varying covariates.
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1 Introduction

Bivariate sequences of angles are often referred to as toroidal time series, be-
cause the pair of two angles can be represented as a point on a torus. Examples
include time series of wind and wave directions and time series of turning an-
gles in studies of animal movement.

We introduce a nonhomogeneous, toroidal hidden semi-Markov model
(HSMM) that segments toroidal time series. Precisely, the distribution of
toroidal data is approximated by a mixture of toroidal densities, whose param-
eters evolve according to a latent semi-Markov process with covariate-specific
dwell times.

Our proposal extends previous approaches that are based on toroidal hid-
den Markov models (Lagona & Picone, 2013). Under a toroidal hidden Markov
model, the sojourn times of the states of the latent process are distributed ac-
cording to a geometric distribution. Our proposal relaxes this restrictive as-
sumption by replacing the latent Markov chain with a latent, nonhomogeneous
semi-Markov model, where the (non necessarily geometric) time spent in a
given regime and the chances of a regime-switching event are separately mod-
eled by a battery of regression models that allow the introduction of covariates.



2 A toroidal hidden semi-Markov model

Let yyy = (yyyt , t = 1, . . .T ) be a bivariate time series, where yyyt = (yt1,yt2) is a vec-
tor of two circular observations. Further, let uuu = (uuut , t = 1, . . .T ) be a sequence
of latent multinomial random variables uuut = (ut1 . . .utK) with one trial and K
classes (or states), whose binary components represent class membership at
time t. Our proposal is a hierarchical model where the joint distribution of the
time series is obtained by

f (yyy) = ∑
uuu

f (yyy | uuu)p(uuu).

The joint distribution p(uuu) of the latent process is described by extending
the notion of a Markov chain. If u is a Markov chain, then p(uuu) is fully known
up to a vector of K initial probabilities πk =P(u1k = 1),k = 1, . . . ,K,∑k πk = 1,
and a K ×K matrix of transition probabilities

π11 π12 . . . π1K
π21 π22 . . . π2K
. . . . . . . . . . . .
πK1 πK2 . . . πKK

=


1− p1 p1ω12 . . . p1ω1K
p2ω21 1− p2 . . . p2ω2K
. . . . . . . . . . . .

pKωK1 pKωK2 . . . 1− pK


where pk = ∑k′ ̸=k πkk′ is the probability of a transition from k to a different
state and ωkk′ is the conditional probability of a transition to state k′ ̸= k, given
a transition from state k. Under this setting, if the process is in state k, the time
τk up to a transition to a different state is geometric

P(τk = τ) = pk(1− pk)
τ−1. (1)

More generally, let Sk(τ) = P(τk > τ) = exp
(
−
∫

τ

0 hk(v)dv
)

be the survival
function of τk, where hk(τ) is the associated hazard function. Then

pk(τ) = P(τk ≤ τ+1 | τk > τ) = 1− exp
(
−
∫

τ+1

τ

hk(v)dv
)
,

is the conditional probability of a transition at time t+1, given that the process
has been in state k during a period of length t. Then

P(τk = τ) = pk(τ)
τ−1

∏
i=1

(1− pk(τ)). (2)



When the hazard hk is time-constant, then (2) reduces to (1). Alternatively, (2)
can be approximated with the desired accuracy by

P(τk = τ) = pk(m)(1− pk(m))τ−m
m−1

∏
i=1

(1− pk(i)). (3)

Parametric hazard functions can be borrowed from the survival analysis liter-
ature and some of them are conveniently associated to a link function g that
trasforms pk(τ) to a linear function of time, say g(pk(τ)) = β0k +β1kτ. Such
a specification can be further extended by introducing a vector of q (possibly
time-varying) covariates, say xxxt , which influence the dwell time distribution

g(pk(τ;xxxt)) = β0k +β1kτ+ xxxTt βββ. (4)

Similarly, covariates may be introduced to shape the conditional transition
probabilities, say ωkk′ = ωkk′(xxxt), through a multinomial regression equation.
The introduction of time-varying covariates makes the latent process nonho-
mogeneous, extending recent literature proposals.

Our proposal is completed by a conditional independence assumption on
the observation process. Precisely,

f (yyy | uuu) =
T

∏
t=1

K

∏
k=1

m

∏
i=1

f (yt ;θθθk)
utki , (5)

where θθθ1, . . .θθθK is a sequence of unknown parameters. Parametric toroidal
densities can be borrowed by the proposals available in the directional statis-
tics literature. A convenient specification is for example the bivariate wrapped
Cauchy distribution (Kato & Pewsey, 2015). It is unimodal, pointwise sym-
metric and has a closed-form expression for the conditional distribution. A
single dependence parameter controls the relationship between the two com-
ponent circular variables, ranging from independence to perfect correlation.
The remaining four parameters respectively indicate the two marginal means
and concentrations.

3 Results

Figure 1 shows the results obtained on a time series of T = 1326 semi-hourly
wind and wave directions, taken in wintertime by the buoy of Ancona, which
is located in the Adriatic Sea at about 30 km from the coast. A 2-state hidden
semi-Markov model has been used to segment the data. The model integrates
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Figure 1. Left: toroidal data clustered within state 1 (black) and state 2 (red). Right:
state-specific dwell time distribution at baseline.

bivariate wrapped Chaucy densities with dwell time regressions that depend
on a baseline Gompertz hazard rate and a time-varying covariate, the fetch.
The fetch is the closest coastal point following the direction from which the
wave comes from and it is computed here by cyclical cubic smoothing splines
(Wood, 2017) that appropriately smooth distances across the Adriatic basin.

The model successfully segments the observations according to two clus-
ters, and offers a clear-cut indication of the distribution of the data under each
regime. Under state 1, winds appear well syncronized with waves. Under state
2, wind and wave directions are essentially independent. Under state 1, the tail
of the baseline dwell time distribution is larger than that one estimated under
state 2, indicating that state 1 is more persistent than state 2. The regression co-
efficient of the fetch is equal to -1.38, indicating that the longer is the distance
from the coast, the smaller is the probability of a state transition.
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