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ABSTRACT: While most of causal inference studies typically disregard interference
between units, it’s important to recognize that agents often interact through social,
physical, or virtual connections, and the effect of the intervention can propagate from
one unit to other connected individuals in the network. In this work, we propose
an innovative machine learning algorithm called Network Causal Tree (NCT), which
combines a tree-based methodology with a Horvitz-Thompson estimator to assess the
heterogeneity of treatment and spillover effects with respect to individual and network
characteristics, in the presence of clustered network interference. Using NCT, we
examine the heterogeneous effects of information sessions on the adoption of a new
insurance policy in rural China.
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1 Introduction

According Cox (1958), inteference occurs when the treatment assignment of
one unit affects the outcome of other units. In the context of policy interven-
tions, interference can arise from many types of interactions, such as social,
physical, or virtual connections. The standard Rubin Causal Model for causal
inference studies (Rubin, 1986) assumes no interference. However, when in-
terference is likely to occur but is ignored, it introduces bias into the estimates
(Forastiere et al. , 2021). Furthermore, understanding spillover effects is cru-
cial for measuring the overall impact of an intervention and enhancing the ef-
ficiency of treatment assignment mechanisms. As a result, recent research has
developed innovative methodologies to address interference.(see, e.g., Sobel,
2006; Rosenbaum, 2007). In parallel to this field of research on interference,
researchers have developed machine learning algorithms to assess the hetero-
geneity of treatment effects with respect to individual characteristics (Athey &



Imbens, 2016). The intuition behind these algorithms is that sub-populations
are partitioned by iteratively separating those groups whose estimated average
treatment effect deviates the most.

In this study, we present a cutting-edge integration of the aforementioned
two topics in the field of causal inference through the introduction of a novel
machine learning algorithm, named Network Causal Tree (NCT), that investi-
gates the heterogeneity of both treatment and spillover effects with respect to
individual, neighborhood and network characteristics, in randomized settings.
NCT works in the presence of clustered network interference, where agents
belong to separate clusters and spillover mechanisms occur only within clus-
ters, according to the links of a cluster-specific network. Conditional effects
are estimated by using an extended version of the Horvitz-Thompson estima-
tor (Aronow & Samii, 2017) to allow for clustered network interference. We
showcase the NCT methodology to assess the effect of intensive training ses-
sions to promote the uptake of a new weather insurance policy for rice farmers
living in villages of rural China (Cai et al. , 2015). In this setting, interference
is likely to arise, since treated households may share what they have learned
with the interfering untreated households.

2 Methods

2.1 Clustered Network Interference

We examine a sample ¥ consisting of N units distributed across K distinct
clusters. Each cluster is represented by the indicator k € X = [1,...,K], and
within each cluster &, units are identified by the index i = 1,...,nt.. These
units interact within a clustered network structure G, where units belonging to
the same cluster may share connections, while connections between different
clusters are absent. Essentially, G can be seen as a collection of K separate sub-
graphs, denoted as Gy. The assignment of units to the intervention is random,
and we use the binary variable Wy, € 0,1 to represent the treatment assigned
to unit / in cluster k. The observed outcome for each unit is indicated by Y.
Additionally, for each unit ik, we have access to a set of individual or network
characteristics denoted as X;.

To define the potential outcomes (Rubin, 1986), we have to rely on some
assumptions on the interference mechanism. Here, we assume that Clustered
Network Interference (CNI) takes place. Under CNI i) the spillover mechanism
is confined to units within the same cluster, and ii) an individual’s outcome
is influenced by the treatment status of units directly connected to her/him



based on the cluster-specific network. Potential outcomes are indexed with re-
spect to the individual intervention Wy, and to the neighborhood treatment Gy,
which represents a numerical synthesis of the treatment assignment vector of
the neighbors: Yix(Wix, Gi). Here, the variable G represents a binary network
exposure based on a threshold function applied to the number of treated neigh-
bors: Gj; equals 1 if the unit ik has at least one treated neighbor, O otherwise.
We outline four estimands of interest T, ., o), tWo treatment effects and two
spillover effects, where treatment (spillvoer) effects are defined by comparing
average potential outcomes under different levels of the individual (neighbor-
hood) treatment status, while keeping as fixed the level of the neighborhood
(individual) treatment.

2.2 The Network Causal Tree algorithm

The NCT algorithm is designed to detect and estimate heterogeneous treatment
and spillover effects in randomized settings, under CNI. NCT is also able to
discover the heterogeneity with respect to more than one estimand simultane-
ously. NCT takes as inputs the observed data {Wi, Yix, Xix }ixc e, the global
network G, the experimental design and a vector of weights ®(w, g;w',g’) rul-
ing the extent of which estimands contribute to the criterion function, while
it returns as output a partition IT of the covariate space, together with point
estimates and standard errors of the conditional average causal effects:

The algorithm provides three main steps. In the first step, NCT randomly
splits clusters in two sets - the discovery set and the estimation set. In the
second step, using the discovery set, NCT sprouts a tree according to the in-
sample splitting function and stops when a stopping criterion is met (reached
maximum depth, insufficient sample size in the leafs). In the third step, NCT
computes the estimated effects and the corresponding standard errors, in all
the partitions identified at the first step.

3 Empirical results

Data include 4,586 households living in specific villages of rural China and
provide information on the friendship networks connecting households in the
same village. Some households are randomly assigned to receive intensive
information sessions on a new weather insurance policy, while the remaining
households receive simple sessions. Households who have at least one treated
household in their neighborhood are assumed to receive an indirect exposure to
the intervention. The outcome indicates whether the household decides to take



up the insurance policy. The heterogeneity of treatment and spillover effects
is evaluated with respect to variables that refer either to characteristics of the
household (production area, size) or to characteristics the of the household’s
owner (sex, age, level of education, risk aversion, perceived probability of
disaster, trust in the government).

Results suggest that the most important heterogeneity drivers of the treatment
effect are the production area, the risk aversion and the trust in the government.
Spillover effects are not statistically significant.
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